Способ управления многофазным выпрямительным агрегатом



Способ управления многофазным выпрямительным агрегатом
Способ управления многофазным выпрямительным агрегатом
Способ управления многофазным выпрямительным агрегатом
Способ управления многофазным выпрямительным агрегатом
Способ управления многофазным выпрямительным агрегатом
Способ управления многофазным выпрямительным агрегатом
Способ управления многофазным выпрямительным агрегатом
Способ управления многофазным выпрямительным агрегатом

 


Владельцы патента RU 2402143:

Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (RU)

Изобретение относится к преобразовательной технике и может быть использовано в установках электролиза алюминия, меди, цинка, хлора, водорода и др., в электротермии, на электрическом транспорте и в других отраслях, применяющих постоянный ток. Техническим результатом является упрощение и повышение коэффициента мощности. В способе управления многофазным выпрямительным агрегатом плавное регулирование выпрямленного напряжения указанного выпрямительного агрегата осуществляют изменением выходного напряжения трехфазного мостового автономного инвертора напряжения с синусоидальной широтно-импульсной модуляцией, который входными выводами подключают к цепи постоянного тока дополнительно введенного трехфазного выпрямительного блока, а выходными выводами подключают к первичной обмотке трехфазного согласующего трансформатора. Вторичные фазные обмотки согласующего трансформатора подключают пофазно последовательно с сетевыми обмотками преобразовательных трансформаторов. Изменение выходного напряжения автономного инвертора напряжения обеспечивают регулированием, либо фазы, либо амплитуды, либо той и другой величины модулирующего синусоидального напряжения. Вентильные обмотки преобразовательного трансформатора дополнительно введенного выпрямительного блока непосредственно подключают к выводам переменного тока диодного моста, который со стороны постоянного тока соединяют с выводами постоянного тока автономного инвертора напряжения. Вторичные фазные обмотки согласующего трансформатора подключают к сетевым обмоткам преобразовательных трансформаторов либо непосредственно, либо посредством компенсирующего устройства с пятой и седьмой гармониками тока в конденсаторах. Вентильные обмотки преобразовательных трансформаторов подключают к выводам переменного тока выпрямительных мостов либо непосредственно, либо посредством аналогичного компенсирующего устройства. Преобразовательный трансформатор дополнительно введенного выпрямительного блока выполняют на самостоятельном трехфазном магнитопроводе. Преобразовательные трансформаторы агрегата выполняют либо на самостоятельных, либо совмещенных магнитопроводах. Выпрямительные мосты агрегата соединяют либо параллельно, либо последовательно. 9 з.п. ф-лы, 8 ил.

 

Изобретение относится к технике преобразования электрической энергии переменного тока в энергию постоянного тока с помощью вентильных преобразователей с плавным регулированием выпрямленного напряжения.

Известен способ тиристорного управления выпрямительными агрегатами (Бобков В.А., Бобков А.В. Реконструкция преобразовательных подстанций для питания электролизеров алюминия. // Силовая электроника. Тематическое приложение к журналу «Компоненты и технологии». - 2006. - №4. - С.66-68.). В этом способе регулирование выпрямленного напряжения агрегатов осуществляется изменением углов управления тиристоров выпрямительных блоков (фазовое управление).

Данный способ обеспечивает плавное регулирование выпрямленного напряжения агрегата, однако ему присущ ряд недостатков. Весьма серьезными недостатками являются сложность конструкции выпрямительного агрегата, большая установленная мощность управляемых полупроводниковых приборов (тиристоров), сложность системы управления. Это связано с тем, что все управляемые полупроводниковые приборы включены во вторичные сильноточные цепи выпрямительных агрегатов (со стороны вентильных обмоток трансформаторов). С возрастанием мощности агрегатов, с осуществлением глубоких вводов на подстанции повышенных напряжений указанные недостатки обостряются. Токи первичных цепей выпрямительных трансформаторов в десятки и сотни раз меньше токов во вторичных цепях, поэтому управление выпрямительными агрегатами более целесообразно осуществлять с первичной стороны трансформаторов. Кроме того, при использовании этого способа управления коэффициент мощности агрегатов снижается до недопустимых для мощных преобразователей величин (коэффициент мощности снижается пропорционально возрастанию глубины регулирования). Последнее является особенно серьезной проблемой, например, в условиях электролизного производства алюминия, поскольку в этом случае выпрямительные агрегаты большую часть времени работают в зарегулированном режиме (при пониженном напряжении) и открываются лишь на время анодного эффекта (вспышки) в ваннах.

Известен способ плавного управления многофазным диодным выпрямительным агрегатом с помощью дополнительно введенного трехфазного мостового автономного инвертора напряжения с синусоидальной широтно-импульсной модуляцией, который входными выводами подключают к цепи постоянного тока агрегата, а выходными выводами подключают к первичной обмотке трехфазного согласующего трансформатора, при этом вторичные фазные обмотки согласующего трансформатора подключают пофазно последовательно с сетевыми обмотками преобразовательных трансформаторов. Регулирование выпрямленного напряжения осуществляется изменением фазы, амплитуды, либо той и другой величины выходного напряжения автономного с синусоидальной широтно-импульсной модуляцией (патент 2333589. Российская Федерация. Способ управления многофазным выпрямительным агрегатом. / Ю.И. Хохлов. // Бюл. изобр. - 2008, №25).

Этот способ, выбранный в качестве ближайшего аналога, при сохранении плавности регулирования выпрямленного напряжения, обеспечивает существенное упрощение выпрямительного агрегата, повышает коэффициент мощности и улучшает основные технические характеристики агрегата. Недостатком способа является то, что его применение в системах электроснабжения со значительными колебаниями постоянного напряжения на нагрузке является затруднительным, так как ведет к усложнению системы управления автономным инвертором.

В основу изобретения положена техническая задача, заключающаяся в обеспечении плавности регулирования выпрямленного напряжения выпрямительного агрегата и повышения его коэффициента мощности в условиях как спокойной нагрузки, так и нагрузки со значительными колебаниями.

Указанная задача решается тем, что в способе управления многофазным выпрямительным агрегатом, по крайней мере, с одной парой шестифазных преобразовательных блоков, включенных по схеме двенадцатифазного преобразования, каждый из которых содержит преобразовательный трансформатор с подключенным к его вентильным обмоткам диодным выпрямительным мостом, выходами постоянного тока связанным с нагрузкой, состоящем в том, что для обеспечения требуемого режима работы потребителя постоянного тока плавно регулируют выпрямленное напряжение. Плавное регулирование выпрямленного напряжения осуществляют изменением выходного напряжения трехфазного мостового автономного инвертора напряжения с синусоидальной широтно-импульсной модуляцией, который выходными выводами подключают к первичной обмотке трехфазного согласующего трансформатора, при этом вторичные фазные обмотки согласующего трансформатора подключают пофазно последовательно с сетевыми обмотками преобразовательных трансформаторов, согласно изобретению входные выводы трехфазного мостового автономного инвертора напряжения подключают к выходным выводам дополнительно введенного трехфазного диодного выпрямительного моста, входные выводы которого подключают к трехфазной вентильной обмотке дополнительно введенного трансформатора, трехфазную сетевую обмотку которого подключают к питающей сети.

Изменение выходного напряжения автономного инвертора напряжения обеспечивают регулированием, либо фазы, либо амплитуды, либо той и другой величины модулирующего синусоидального напряжения.

Выходное напряжение автономного инвертора напряжения подают на первичную обмотку трехфазного согласующего трансформатора, вторичные фазные обмотки которого подключают к сетевым обмоткам преобразовательных трансформаторов либо непосредственно, либо посредством первичных обмоток реакторов компенсирующего устройства, вторичные обмотки которых включают по схеме, фильтрующей в коммутирующие конденсаторы пятую и седьмую гармоники тока.

Вентильные обмотки преобразовательных трансформаторов подключают к выводам переменного тока выпрямительных мостов либо непосредственно, либо посредством первичных обмоток реакторов компенсирующего устройства, вторичные обмотки которых включают по схеме, фильтрующей в коммутирующие конденсаторы пятую и седьмую гармоники тока.

Преобразовательные трансформаторы агрегата выполняют либо на самостоятельных трехфазных магнитопроводах с одной трехфазной сетевой и одной трехфазной вентильной обмотками, либо на одном трехфазном магнитопроводе, на котором укладывают одну трехфазную сетевую и две трехфазные вентильные обмотки.

Выпрямительные мосты агрегата со стороны постоянного тока соединяют либо параллельно, либо последовательно.

Таким образом, задача регулирования выпрямленного напряжения выпрямительного агрегата и повышения его коэффициента мощности сводится к регулированию выходного напряжения автономного инвертора напряжения, входные выводы которого подключают к выходным выводам дополнительно введенного трехфазного диодного выпрямительного моста, входные выводы которого подключают к трехфазной вентильной обмотке дополнительно введенного трансформатора, трехфазную сетевую обмотку которого подключают к питающей сети.

Принципиальные схемы вариантов выпрямительных агрегатов, в которых реализован предлагаемый способ управления, представлены на фиг.1-5. Они содержат шестифазные преобразовательные блоки 1 и 2 с преобразовательными трансформаторами 3 и 4 и выпрямительными мостами 5 и 6. Схемами соединения обмоток трансформаторов 3 и 4 обеспечивается двенадцатифазный режим преобразования.

Компенсирующее устройство 7 (фиг.2) содержит трехфазные реакторы 8 и 9 и коммутирующую конденсаторную батарею 10. Дополнительно введенный шестифазный преобразовательный блок 16 с преобразовательным трансформаторам 17 и выпрямительным мостом 18 питает автономный инвертор напряжения 12, содержащий трехфазный выпрямительный мост на полностью управляемых вентилях с обратными диодами 13, входной конденсатор 14 и систему управления 15, обеспечивающую синусоидальную широтно-импульсную модуляцию выходного напряжения инвертора 12, которое с помощью согласующего трехфазного трансформатора 11 вводится в цепь сетевых обмоток преобразовательных трансформаторов 3 и 4.

Для пояснения сути предлагаемого способа на фиг.6, 7 и 8 представлены результаты моделирования электромагнитных процессов в агрегате по схеме на фиг.5 при фазах синусоидального модулирующего сигнала, равных 0,90 и 180 эл. град соответственно.

Способ управления многофазным выпрямительным агрегатом реализуют следующим образом. После подключения выпрямительного агрегата к питающей сети на выходах преобразовательных блоков 1, 2 с преобразовательными трансформаторами 3, 4 и выпрямительными мостами 5, 6 создается постоянное напряжение. Это напряжение соответствует двенадцатифазному режиму преобразования в силу соединения вентильных обмоток трансформаторов 3 и 4 в звезду и треугольник (аналогичное может быть осуществлено и за счет сетевых обмоток трансформаторов 3 и 4). В то же время, на выходах дополнительно введенного преобразовательного блока 16 с преобразовательным трансформатором 17 и выпрямительным мостом 18 создается постоянное напряжение. Выпрямленное напряжение дополнительно введенного преобразовательного блока подают на вход автономного инвертора напряжения 12, выполненного в виде трехфазного выпрямительного моста 13 на полностью управляемых вентилях (например, на IGBT транзисторах, как показано на фиг.1-5) с обратными диодами и необходимым по принципу работы инвертора напряжения конденсатором 14. В соответствии с принципом широтно-импульсной модуляции системой управления инвертора 15 формируют синусоидальное модулирующее напряжение с частотой питающей сети и пилообразное напряжение с несущей частотой, значительно превышающей частоту напряжения питающей сети (в десятки и сотни раз). Указанные напряжения определяют моменты открытия и закрытия управляемых вентилей инвертора 12, коммутирующих с несущей частотой пилообразного напряжения. В результате чего на выходе инвертора 12 создают переменное импульсное трехфазное напряжение, первая гармоника которого имеет частоту модулирующего напряжения, т.е. частоту напряжения питающей сети. Выходное трехфазное напряжение инвертора 12 подают на первичную обмотку трехфазного согласующего трансформатора 11. Создаваемое на вторичных обмотках согласующего трансформатора 11 выходное напряжение, повторяющее форму выходного напряжения инвертора (см. кривую напряжения на выходе согласующего трансформатора на фиг.6, 7 и 8), вводят пофазно последовательно между питающей сетью и сетевыми обмотками преобразовательных трансформаторов 3 и 4 (вторичная обмотка трансформатора имеет соединение «разомкнутая звезда»). На фиг.6, 7 и 8 частота питающей сети и соответственно модулирующего напряжения равна 50 Гц, а несущая частота пилообразного напряжения и соответственно частота коммутации управляемых вентилей инвертора равна 5000 Гц. Начальную фазу и амплитуду первой гармоники напряжения на выходе инвертора 12, а следовательно, и на выходе согласующего трансформатора регулируют соответственно изменением фазы и амплитуды модулирующего напряжения. В качестве примера на фиг.6, 7 и 8 проиллюстрировано изменение фазы напряжения на выходе трансформатора 11, причем на фиг.6 она равна 0, на фиг.7 - 90 и на фиг.8 - 180 эл. град. Таким образом, изменением выходного напряжения инвертора, осуществляемого изменением фазы, амплитуды или той и другой величины модулирующего напряжения, изменяют результирующее напряжение на сетевых обмотках преобразовательных трансформаторов 3 и 4 и тем самым плавно регулируют выпрямленное напряжение всего агрегата. Максимальную глубину регулирования выпрямленного напряжения задают соответствующим выбором коэффициента трансформации согласующего трансформатора 11 с учетом инвертирования напряжения на вторичной обмотке этого трансформатора при переходе от одного предельного значениях фазы модулирующего напряжения, равного 0, к другому предельному значению, равному 180 эл. град (см. кривые напряжения на выходе согласующего трансформатора на фиг.6 и 8). С целью повышения коэффициента мощности выпрямительного агрегата, повышения жесткости его внешней характеристики, обеспечения жесткого равномерного деления выпрямленного тока между шестифазными блоками 1 и 2 при их параллельной работе предлагаемый способ может быть реализован в агрегатах с компенсирующим устройством 7, состоящим из двух трехфазных реакторов 8, 9 и трехфазной коммутирующей батареи 10. Компенсирующее устройство может быть включено как со стороны сетевых (фиг.2 и 5), так и со стороны вентильных (фиг.3) обмоток преобразовательных трансформаторов 3 и 4. Обтекаемые токами преобразовательных блоков первичные обмотки реакторов 8 и 9 компенсирующего устройства 7 трансформируют во вторичные обмотки, характерные для шестифазных блоков первую, пятую, седьмую, одиннадцатую, тринадцатую и т.п. гармоники. По отношению к первой, одиннадцатой, тринадцатой и т.п. гармоникам вторичные обмотки реакторов образуют короткозамкнутую цепь (для указанных гармоник реакторы 8 и 9 работают в режиме трансформатора тока). Протекание этих гармоник по общей вторичной цепи реакторов 8 и 9 обеспечивает жесткое выравнивание выпрямленных токов преобразовательных блоков 1 и 2 при их параллельной работе (фиг.2 и 3). По отношению к пятой, седьмой и т.п. гармоникам реакторы 8 и 9 работают в режиме трансформатора напряжения, создавая на конденсаторной батарее 10 напряжения соответствующих гармоник (см. кривые тока и напряжения на коммутирующей конденсаторной батарее на фиг.6, 7 и 8). Напряжениями на конденсаторной батарее 10 осуществляется опережающая искусственная коммутация вентилей выпрямительных мостов 5 и 6 (фиг.2, 3 и 5), что обеспечивает повышение коэффициента мощности выпрямительного агрегата и жесткости его внешней характеристики. Предлагаемый способ может быть реализован как в агрегатах, у которых преобразовательные трансформаторы 3 и 4 выполнены на самостоятельных трехфазных магнитопроводах (фиг.1, 2 и 5), так и в агрегатах, у которых указанные трансформаторы выполнены на едином совмещенном магнитопроводе (фиг.3 и 4). Способ может быть реализован как в выпрямительных агрегатах с последовательным по отношению к нагрузке соединением диодных выпрямительных мостов 5 и 6 (фиг.1, 4 и 5), так и в агрегатах с параллельным соединением выпрямительных мостов (фиг.2 и 3).

Технико-экономический эффект от предлагаемого способа управления многофазным выпрямительным агрегатом состоит в существенном упрощении выпрямительного агрегата, поскольку теперь силовая часть его выполняется в простейшем диодном варианте без тиристоров или дросселей насыщения. Дополнительно введенный в схему преобразовательный блок и автономный инвертор напряжения с согласующим трансформатором имеют небольшую установленную мощность, определяемую лишь половиной требуемого диапазона регулирования выпрямленного напряжения агрегата из-за возможности изменения фазы выходного напряжения инвертора и соответственно согласующего трансформатора на 180 эл. град. Предлагаемый способ обеспечивает повышение коэффициента мощности выпрямительного агрегата, что снижает потери и повышает качество электрической энергии в питающей сети. Повышение коэффициента мощности имеет место даже при отсутствии компенсирующего устройства, если регулирование напряжения агрегата осуществляется изменением фазы выходного напряжения инвертора и согласующего трансформатора. При этом наибольший коэффициент мощности наблюдается при фазе модулирующего сигнала, равной 90 эл. град. Особенно высокий коэффициент мощности достигается при применении предлагаемого способа в агрегате с компенсирующим устройством, поскольку в этом случае выпрямитель практически не потребляет реактивной мощности. Об этом свидетельствует совпадение по фазе напряжения и тока питающей сети на фиг.6, 7 и 8. Причем в этом случае способ реализуется в агрегате, установленная мощность компенсирующего устройства которого при работе на частотах пятой и седьмой гармоник примерно в шесть раз меньше той мощности, которая потребовалась бы при традиционном включении компенсирующего устройства на частоту питающей сети. Кроме того, при использовании способа в агрегате с компенсирующим устройством и параллельным включением выпрямительных мостов имеет место упрощение агрегата за счет исключения специальных устройств, выравнивающих токи преобразовательных блоков. Наконец, применение способа в агрегатах с компенсирующим устройством повышает жесткость внешней характеристики выпрямителя, что увеличивает выходную мощность агрегата.

1. Способ управления многофазным выпрямительным агрегатом по крайней мере с одной парой шестифазных преобразовательных блоков, включенных по схеме двенадцатифазного преобразования, каждый из которых содержит преобразовательный трансформатор с подключенным к его вентильным обмоткам диодным выпрямительным мостом, выходами постоянного тока связанным с нагрузкой, состоящий в том, что осуществляют плавное регулирование выпрямленного напряжения агрегата изменением выходного напряжения трехфазного мостового автономного инвертора напряжения с синусоидальной широтно-импульсной модуляцией, который выходными выводами подключают к первичной обмотке трехфазного согласующего трансформатора, при этом вторичные фазные обмотки согласующего трансформатора подключают пофазно последовательно с сетевыми обмотками преобразовательных трансформаторов, отличающийся тем, что входные выводы трехфазного мостового автономного инвертора напряжения подключают к выходным выводам дополнительно введенного трехфазного диодного выпрямительного моста, входные выводы которого подключают к трехфазной вентильной обмотке дополнительно введенного трансформатора, трехфазную сетевую обмотку которого подключают к питающей сети.

2. Способ по п.1, отличающийся тем, что плавное регулирование выпрямленного напряжения агрегата осуществляют изменением фазы синусоидального модулирующего напряжения трехфазного мостового автономного инвертора напряжения с широтно-импульсной модуляцией.

3. Способ по п.1, отличающийся тем, что плавное регулирование выпрямленного напряжения агрегата осуществляют изменением амплитуды синусоидального модулирующего напряжения трехфазного мостового автономного инвертора напряжения с широтно-импульсной модуляцией.

4. Способ по любому из пп.1-3, отличающийся тем, что выходное напряжение автономного инвертора напряжения подают на первичную обмотку трехфазного согласующего трансформатора, вторичные фазные обмотки которого подключают к сетевым обмоткам преобразовательных трансформаторов непосредственно.

5. Способ по любому из пп.1-3, отличающийся тем, что выходное напряжение автономного инвертора напряжения подают на первичную обмотку трехфазного согласующего трансформатора, вторичные фазные обмотки которого подключают к сетевым обмоткам преобразовательных трансформаторов посредством первичных обмоток трехфазных реакторов компенсирующего устройства, вторичные обмотки которых включают по схеме, фильтрующей в коммутирующую конденсаторную батарею пятую и седьмую гармоники тока.

6. Способ по любому из пп.1-3, отличающийся тем, что выходное напряжение автономного инвертора напряжения подают на первичную обмотку трехфазного согласующего трансформатора, вторичные фазные обмотки которого подключают к сетевым обмоткам преобразовательных трансформаторов непосредственно, а вентильные обмотки преобразовательных трансформаторов подключают к выводам переменного тока выпрямительных мостов посредством первичных обмоток трехфазных реакторов компенсирующего устройства, вторичные обмотки которых включают по схеме, фильтрующей в коммутирующую конденсаторную батарею пятую и седьмую гармоники тока.

7. Способ по любому из пп.1-3, отличающийся тем, что выходное напряжение автономного инвертора напряжения подают на первичную обмотку трехфазного согласующего трансформатора, вторичные фазные обмотки которого подключают к сетевым обмоткам преобразовательных трансформаторов, каждый из которых выполняют на самостоятельном трехфазном магнитопроводе, на котором укладывают одну трехфазную сетевую и одну трехфазную вентильную обмотки.

8. Способ по любому из пп.1-3, отличающийся тем, что выходное напряжение автономного инвертора напряжения подают на первичную обмотку трехфазного согласующего трансформатора, вторичные фазные обмотки которого подключают к сетевым обмоткам преобразовательных трансформаторов, выполненных на одном трехфазном магнитопроводе, на котором укладывают одну трехфазную сетевую и две трехфазные вентильные обмотки.

9. Способ по любому из пп.1-3, отличающийся тем, что выходное напряжение автономного инвертора напряжения подают на первичную обмотку трехфазного согласующего трансформатора, вторичные фазные обмотки которого подключают к сетевым обмоткам преобразовательных трансформаторов, вентильные обмотки которых подключают к выпрямительным мостам, со стороны постоянного тока соединенным параллельно.

10. Способ по любому из пп.1-3, отличающийся тем, что выходное напряжение автономного инвертора напряжения подают на первичную обмотку трехфазного согласующего трансформатора, вторичные фазные обмотки которого подключают к сетевым обмоткам преобразовательных трансформаторов, вентильные обмотки которых подключают к выпрямительным мостам, со стороны постоянного тока последовательно.



 

Похожие патенты:

Изобретение относится к преобразовательной технике и может быть использовано для бестрансформаторного преобразования трехфазного переменного напряжения в 12-пульсное напряжение, а также трансформаторного преобразования в 12-пульсное или трехфазное переменное напряжение с качественным гармоническим составом.

Изобретение относится к преобразовательной технике и может быть использовано для преобразования трехфазного переменного напряжения в постоянное с периодичностью выпрямления 12N (где N=2, 3, 4, ), а также трехфазное переменное напряжение с качественным гармоническим составом.

Изобретение относится к электротехнике и предназначено для электроподвижного состава переменного тока с плавным регулированием напряжения. .

Изобретение относится к преобразовательной технике и может быть использовано для преобразования трехфазного переменного напряжения в постоянное с постоянным уровнем высших гармоник во всем диапазоне регулирования.

Изобретение относится к преобразовательной технике и может быть использовано для преобразования трехфазного переменного напряжения в постоянное с постоянным уровнем высших гармоник во всем диапазоне регулирования.

Изобретение относится к электротехнике и может быть использовано для управления выпрямителем с емкостным фильтром на выходе при создании электромеханических систем, например при создании электроприводов переменного тока.

Изобретение относится к силовой преобразовательной технике и может быть использовано в системах электропитания постоянным током, для питания электроприводов постоянного тока, в силовых выпрямительных установках, питающихся от источников электрической энергии ограниченной мощности.

Изобретение относится к области электротехники, а именно к однофазным вторичным источникам питания инверторного типа. .

Изобретение относится к способам и устройствам заряда емкостных накопителей электрической энергии (аккумуляторов, молекулярных и других накопительных конденсаторов), широко используемых в импульсной технике.

Изобретение относится к электротехнике и может быть использовано для питания постоянным током электрометаллургических установок. .

Изобретение относится к преобразовательной технике. .

Изобретение относится к электроизмерительной технике и может быть использовано для бесконтактного автоматизированного управления величиной средневыпрямленного напряжения мостового тиристорного выпрямителя при возникновении в схеме выпрямления ситуаций, связанных с «обрывом» или «пробоем» тиристоров.

Изобретение относится к электротехнике и силовой преобразовательной технике и может быть использовано в качестве преобразователя переменного напряжения в постоянное для питания потребителей с повышенными требованиями к качеству выпрямленного напряжения, электромагнитной совместимости и массогабаритным показателям.

Изобретение относится к полупроводниковым преобразователям электрической энергии, предназначенным для преобразования переменного напряжения в регулируемое постоянное, и может быть использовано в регулируемых электроприводах постоянного тока и в качестве первого преобразователя в преобразователях частоты с промежуточным звеном постоянного напряжения.

Изобретение относится к генератору для дуговой сварки с высоким коэффициентом мощности и может найти применение в дуговых сварочных аппаратах. .

Изобретение относится к преобразовательной технике и может быть использовано в преобразователях для защиты от электрохимической коррозии подземных металлических сооружений, в устройствах зарядки аккумуляторов, в установках запуска двигателей самолетов, автомобилей, источниках питания опреснительных установок и других целей.

Изобретение относится к технике преобразования электрической энергии переменного тока в энергию постоянного тока с помощью вентильных преобразователей с плавным регулированием выпрямленного напряжения.

Изобретение относится к области электротехники. .

Изобретение относится к системам электроснабжения потребителей постоянного тока, осуществляющим преобразование электрической энергии переменного тока в энергию постоянного тока с помощью вентильных преобразователей
Наверх