Устройство для защиты от коррозии нефтегазодобывающих скважин


 


Владельцы патента RU 2402673:

Общество с ограниченной ответственностью научно-производственное предприятие "ВНИКО" (RU)

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для защиты скважин от коррозии. Устройство содержит гибкий токопроводник, размещенный между насосно-компрессорной и обсадной трубами на всю длину защищаемой трубы. Токопроводник выполнен без изоляции из металла или сплава, обладающего электродным потенциалом более отрицательным, чем потенциал защищаемой трубы. Повышается надежность, упрощается конструкция. 1 табл.

 

Изобретение относится к протекторной защите и может быть применено для защиты от коррозии скважин в нефтегазодобывающей отрасли.

Известно устройство для протекторной защиты от коррозии внутренней поверхности насосно-компрессорных труб в нефтегазодобывающих скважинах, включающее установленные внутри колонны по всей ее длине элементы, выполненные в виде полых цилиндров из материала с более высоким электроотрицательным электрохимическим потенциалом по сравнению с материалом колонны (Патент RU 2072029, опубл. 1997.01.20).

Но это устройство отличается сложностью конструкции и необходимостью периодической замены элементов из-за их растворения в процессе работы.

Наиболее близким по технической сущности является анод для защиты от коррозии нефтегазодобывающих скважин, который расположен между насосно-компрессорной и обсадной трубами на всю длину защищаемой трубы и выполнен в виде гибкого токопроводника из коррозионно-стойкого стального троса в перфорированной электроизоляционной оболочке (Патент RU №2357009 от 27.12.2007 г.).

Однако такой анод в случае пропадания защитного напряжения перестает защищать скважину от коррозии.

Перед авторами стояла задача повышения надежности защиты от коррозии нефтегазодобывающих скважин, а также упрощение конструкции токопроводника.

Поставленная задача решена тем, что гибкий токопроводник, размещенный между насосно-компрессорной и обсадной трубами на всю длину защищаемых труб, выполнен без изоляции из металла или сплава, обладающего электродным потенциалом более электроотрицательным, чем потенциал защищаемой трубы.

Сущность предлагаемого изобретения состоит в том, что токопроводник, выполненный без изоляции в виде троса из сплава, например на основе магния, алюминия или цинка, опускаясь на всю глубину скважины (длину защищаемой трубы) касается в отдельных точках металла обсадной или насосно-компрессорной труб. Металл гибкого проводника подобран таким образом, что его стандартный электродный потенциал имеет более электроотрицательное значение, чем металл труб скважины. Тогда согласно законам электрохимической коррозии гибкий токопроводник будет выполнять роль протектора и защищать от коррозии одновременно как обсадную, так и насосно-компрессорную трубы по всей длине. При этом не требуется поддерживать определенное значение защитного потенциала на скважине, не нужен и сам источник постоянного напряжения.

На предприятии были изготовлены электроды, состоящие из токопроводника, выполненного из сплава Mg, Al, Zn, Cu (потенциалы приведены относительно водородного электрода сравнения). Результаты испытаний представлены в таблице.

Таблица
Материал электрода Потенциал электрода (гибкого токопроводника - протектора), В Потенциал металла скважины, В Степень протекторной защиты металла скважины
Сплав Mg -2,37 -0,73 Очень эффективная защита
Сплав Al -1,70 -0,73 Эффективная защита
Сплав Zn -0,70 -0,73 Практически не защищает
Сплав Cu +0,34 -0,73 Не защищает, наоборот усиливает коррозию

Предлагаемое нами устройство для защиты от коррозии нефтегазодобывающих скважин простое в изготовлении, обладает высокой степенью надежности защиты от коррозии.

Проведенный патентно-информационный поиск, а также проведенные лабораторные испытания позволяют судить о новизне, изобретательском уровне и применимости в промышленности. Считаем, что описанное нами «Устройство для защиты от коррозии нефтегазодобывающих скважин» может быть признано изобретением и защищено патентом Российской Федерации.

Устройство для защиты от коррозии нефтегазодобывающих скважин, состоящее из гибкого токопроводника, размещенного между насосно-компрессорной и обсадной трубами на всю длину защищаемой трубы, отличающееся тем, что токопроводник выполнен без изоляции из металла или сплава, обладающего электродным потенциалом более отрицательным, чем потенциал защищаемой трубы.



 

Похожие патенты:
Изобретение относится к нефтедобывающей промышленности, в частности к доставке реагента в скважину и подаче его в поток пластовой жидкости для предотвращения коррозии, отложения солей и парафинов на глубинно-насосном оборудовании.

Изобретение относится к нефтегазовой промышленности, в частности к способам защиты скважинного оборудования от коррозии и отложений смоло-парафинистых отложений.
Изобретение относится к нефтедобывающей промышленности и может найти применение при очистке призабойной зоны нагнетательной скважины. .
Изобретение относится к нефтегазовому комплексу, в частности к способам определения коррозии цементного камня. .

Изобретение относится к нефтяной промышленности и может быть использовано для интенсификации добычи нефти бесштанговыми насосами в условиях отложений асфальтенов, парафинов и коррозии.

Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации трубопроводов системы нефтесбора и поддержания пластового давления нефтяного месторождения.

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам для дозирования в нефтяные скважины ингибиторов коррозии, парафиноотложений, солеотложения и деэмульгаторов.

Изобретение относится к нефтегазодобывающей промышленности и может найти применение при эксплуатации скважин с антикоррозионной жидкостью в межтрубном пространстве, при контроле герметичности обсаженных скважин, при контроле сохранности антикоррозионной жидкости в нагнетательных скважинах.

Изобретение относится к нефтегазовой промышленности, в частности к способу защиты скважинного оборудования от коррозии

Изобретение относится к оборудованию для систем катодной защиты от подземной коррозии насосно-компрессорных и обсадных труб газодобывающих скважин и может быть использовано в нефтегазодобывающей отрасли

Изобретение относится к нефтегазодобывающей области, в частности к методам и средствам защиты скважинных установок электроцентробежных насосов при добыче углеводородного сырья

Группа изобретений относится к нефтяной промышленности, в частности к способу и устройству для защиты скважинного оборудования. Способ нанесения защитного покрытия на внутреннюю и наружную поверхности труб включает спуск устройства для нанесения покрытия в колонну труб, расплавление и нанесение его на стенки. Защитное покрытие наносят на наружную поверхность соединительных муфт в количестве не более трех с помощью устройства для нанесения покрытия на наружную поверхность. Защитное покрытие на наружную поверхность муфт наносят при спуске колонны труб в скважину. Нанесение защитного покрытия на внутреннюю поверхность нескольких насосно-компрессорных труб производят с поверхности земли устройством для нанесения покрытия на внутреннюю поверхность. Затем заглаживают покрытие калибровочным узлом. Устройство для нанесения защитного покрытия на внутреннюю поверхность труб включает емкость для расплавления защитного состава, нагревательные элементы, поршень и калибровочный узел. Калибровочный узел является гибким, внутри него установлены пружины. Пружины позволяют изменять наружный диаметр калибровочного узла при изменении диаметра трубы. На устройстве установлены датчики давления, температуры, прожекторы и ВЭБ камеры, позволяющие контролировать процесс нанесения покрытия. Изобретение позволяет увеличить срок службы скважинного оборудования, обеспечивает повышение технологичности и качества процессов нанесения покрытия, повышение безопасности и надежности оборудования. 2 н.п.ф-лы, 2 ил.

Изобретение относится к буровой трубе, способу ее сооружения, покрытию для нанесения на буровую трубу и способу сооружения защищенной таким покрытием буровой трубы. Буровая труба включает: полимерную основную структуру, образованную из армированного волокнами бисмалеимидного полимера; и гидрофобное покрытие, включающее малеимидный комплекс, химически связанное с полимерной основной структурой. Покрытие образует ковалентную связь с полимерной основной структурой. Способ сооружения буровой трубы включает: сооружение основной структуры буровой трубы из полимерного материала; изготовление гидрофобного покрытия; и создание ковалентной химической связи между покрытием и основной структурой. Покрытие для нанесения на буровую трубу выполнено из множества слоев, из которых по меньшей мере один слой образован из материала, содержащего химический реагент, выбранный для реакции в присутствии скважинных текучих сред, которые являются разрушающими по отношению к полимерному материалу. Технический результат - обеспечение образования покрытия на буровой трубе, которое в достаточной степени связано с нижележащей основной структурой полимерного материала, чтобы противостоять агрессивной окружающей среде, присутствующей в скважинном применении. 4 н. и 26 з.п. ф-лы, 10 ил.

Изобретение относится к нефтедобывающей промышленности и направлено на повышение эффективности эксплуатации скважинных глубинных электроцентробежных насосов, осложненных образованием асфальтосмолопарафиновых отложений на рабочих органах насоса. В качестве растворяющего отложения реагента предложено использовать горячую нефть по технологии динамического воздействия. С этой целью выше и ниже глубинного насоса предварительно устанавливают камеры одинакового объема с электронагревательным элементом и датчиками температуры. Скважинную нефть после остановки ЭЦН нагревают до необходимой температуры в нижней камере и перемещают через полость насоса самим же насосом в верхнюю камеру нагрева. Для снижения скорости движения горячей нефти через полость насоса производительность последнего снижают с помощью частотного регулятора тока. При наличии клапана обратного трехпозиционного (КОТ) над верхней камерой нагрева горячую нефть возвращают обратно в нижнюю камеру с устья скважины с помощью передвижного насосного агрегата типа ЦА-320. При отсутствии выше насоса и верхней камеры нагрева обратного клапана типа КОТ горячая нефть самотеком под действием сил гравитации спускается в нижнюю камеру. Общее время циклического воздействия горячей нефти на отложения в полости глубинного электроцентробежного насоса должно быть равным времени, необходимому для полного растворения АСПО. Это время предварительно определяется в лабораторных условиях с моделированием скважинных условий. Периодическое применение способа на осложненных скважинах позволит повысить сроки их безаварийной эксплуатации. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области нефтедобывающей промышленности при добыче нефти с больших глубин, более 500 м, и при содержании в нефти газов. Техническим результатом изобретения является исключения или уменьшения эффекта кавитационной эрозии насосно-компрессорных труб. Сущность изобретения: способ защиты насосно-компрессорной трубы от кавитационной эрозии включает закачивание воды в нефтяной пласт через нагнетательную трубу и отбор скважинной жидкости с растворенными в ней газами через насосно-компрессорную трубу - НКТ. При содержании растворенных газов не менее 100 м3 на 1 м3 скважинной жидкости давление на выходе из скважины либо плавно увеличивают от 0,1 до 2 МПа с шагом 0,01-0,003 МПа/неделя, либо это давление плавно поддерживают в 1,1-1,2 раза выше пороговой величины давления вскипания основного компонента жидкого газа, растворенного в нефти. 2 ил.

Изобретение относится к устройствам для очистки и защиты труб от коррозионного разрушения и от разрушения под воздействием трения. Устройство включает цилиндрический корпус с центрирующим элементом. Корпус выполнен полым, многослойным. Наружный слой выполнен из протекторного сплава. На поверхности корпуса выполнена сквозная прорезь, соединяющая противоположные торцы корпуса и имеющая участки, расположенные в продольном направлении корпуса, и участок, расположенный в поперечном направлении корпуса. Ширина участков прорези, расположенных в продольном направлении, не менее внутреннего диаметра корпуса. Ширина участка прорези, расположенного в поперечном направлении, больше внутреннего диаметра корпуса. Центрирующий элемент выполнен в виде щетки из электропроводного материала. Расширяются функциональные возможности, повышается удобство крепления. 2 з.п. ф-лы, 3 ил., 1 табл.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к ингибированию образования отложений и коррозии скважинного оборудования. Установка включает электромагнитный излучатель, двухканальный генератор, электронный блок управления, имеющий выход, подключенный к входу генератора, блок сопряжения с погружным электродвигателем, датчики параметров скважинной среды, подключенные к блоку управления. Излучатель содержит сердечник из магнитомягкого высокочастотного материала на скважинном оборудовании с пазами, в которых размещены витки аксиальной обмотки, ортогональную обмотку, витки которой расположены перпендикулярно оси скважинного оборудования. Генератор подключен одним управляющим выходом к аксиальной обмотке, вторым управляющим выходом к ортогональной обмотке. Повышается эффективность ингибирования образования отложений и коррозии. 3 н. и 5 з.п. ф-лы, 5 ил.

Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации обсадных колонн скважин и нефтепромысловых трубопроводов. Технический результат заключается в повышении эффективности защиты от коррозии обсадных колонн скважин и нефтепромыслового оборудования, повышении надежности их работы, увеличении межремонтного интервала. Способ катодной защиты обсадных колонн скважин и нефтепромысловых трубопроводов от коррозии включает этапы, на которых предварительно бурят скважину до глубины, большей на 2,5-3 м длины анодного заземлителя, разбуривают скважину в интервале заглубления анодного заземлителя, в который устанавливают ковер, по окончании бурения непосредственно перед спуском электродов в скважину закачивают до верхнего уровня ковера глинистый раствор, устанавливают анодный заземлитель, устанавливают защитный ток для начального периода эксплуатации системы катодной защиты, производят поляризацию в течение 3-7 суток, после чего измеряют общие и поляризационные потенциалы защищаемых сооружений, при изменении силы защитного тока более чем на 20% от установленной делают вывод об утечке глинистого раствора и закачивают до верхнего уровня анода анодного заземлителя гель, состоящий на 100 литров воды: 2 кг мела, 2 кг клея марки КМЦ и 1 кг соли, закачанный гель выдерживают до превращения в желеобразное состояние 5-10 часов, снова замеряют силу тока, по восстановлению силы тока до исходной судят о полном восстановлении токопроводности между грунтом и анодом и о достижении катодной защиты скважины. Устройство катодной защиты обсадных колонн скважин и нефтепромысловых трубопроводов от коррозии содержит электрод-токоввод с кабелем, рабочий электрод, кабельный вывод, контрольно-измерительный пункт, перфорированную полимерную газоотводную трубку, ковер, трубу обсаживающую полиэтиленовую, канат капроновый, заполнитель, в качестве которого используют гель, состоящий на 100 литров воды: 2 кг мела, 2 кг клея марки КМЦ и 1 кг соли. 2 н. и 6 з.п. ф-лы, 2 ил.
Наверх