Клистрон



Клистрон
Клистрон

 


Владельцы патента RU 2404477:

Российская Федерация, от имени которой выступает государственная корпорация по атомной энергии "Росатом"-Госкорпорация "Росатом" (RU)
Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ" (RU)

Изобретение «Клистрон» относится к сверхвысокочастотной (СВЧ) технике, а именно к области генерации электромагнитного излучения, и может быть использовано при создании генераторов мощного СВЧ-излучения. Клистрон содержит установленный в вакуумной камере и подключенный к внешнему источнику питания катод, анод, систему резонаторов, коллектор, устройство для создания ведущего магнитного поля, а также вывод энергии. Особенностью клистрона является то, что устройство для создания ведущего магнитного поля состоит из последовательно включенных соленоидов двух типов, имеющих разную индуктивность, установленных таким образом, что соленоиды с меньшей индуктивностью расположены напротив зазоров резонаторов. Техническим результатом изобретения является увеличение эффективности использования энергии пучка электронов. 2 ил.

 

Изобретение относится к сверхвысокочастотной (СВЧ) технике, а именно к области генерации электромагнитного излучения, и может быть использовано при создании генераторов мощного СВЧ-излучения.

В качестве аналога рассмотрим клистрон, описанный в [1] (Лебедев И.В., под ред. Девяткова Н.Д. Техника и приборы сверхвысоких частот. Изд. 2-ое. Учебник для вузов по специальности «Электронные приборы», М.: «Высшая школа», 1972, с.129). В данном устройстве немодулированный электронный поток, выходящий из катода, поступает в первый резонатор, между сетками которого имеется продольное электрическое поле сверхвысокой частоты. Это поле производит скоростную модуляцию электронного потока. Двигаясь далее в пространстве дрейфа, электроны постепенно образуют сгустки. Эти сгустки поступают во второй резонатор с частотой, равной частоте входного сигнала, и наводят ток, протекающий по внутренней поверхности стенок второго резонатора. Появляющееся между сетками резонатора электрическое поле тормозит электроны. Кинетическая энергия электронов, полученная ими от источника ускоряющего напряжения, преобразуется в энергию СВЧ-колебаний и поступает через вывод энергии в выходную нагрузку.

Недостатком данной конструкции является малый КПД генерации излучения.

Более близким по техническому решению к предлагаемому устройству является релятивистский многорезонаторный клистрон, описанный в [2] (IEEE Transactions on Plasma Science, vol.22, №5, October 1994, p.692). В двухрезонаторном клистроне препятствием для дальнейшего повышения КПД является ограничение по максимальной модуляции пучка. В многорезонаторном клистроне электронный поток, поступающий из катода в первый резонатор, модулируется по скорости, при этом, если модулирующее напряжение мало, то во второй резонатор поступают лишь слабо сформированные сгустки. На зазоре второго резонатора наводится напряжение, значительно превышающее напряжение на первом зазоре. Это напряжение, в свою очередь, производит скоростную модуляцию электронного потока. Аналогичные процессы протекают в каждом промежуточном резонаторе многорезонаторного клистрона. Таким образом, амплитудная модуляция электронного пучка значительно увеличивается, благодаря чему увеличивается КПД генератора. Однако в релятивистском клистроне невозможно применять сетки в зазорах резонаторов, так как из-за высокой энергии электронного пучка они будут очень быстро сгорать. В связи с этим линии электрического поля имеют максимальную плотность непосредственно в зазоре, и эта плотность уменьшается ближе к оси резонатора. Поэтому нужно провести пучок максимально близко к поверхности резонатора, чтобы взаимодействие пучка и электрического поля было максимальным, однако слишком близко провести не удается, так как пучок садится на стенки резонатора.

Таким образом, основной недостаток данного генератора заключается в малом КПД генерации излучения, обусловленном низкой эффективностью преобразования энергии пучка электронов в СВЧ-излучение.

Задачей предлагаемого изобретения является создание усовершенствованного СВЧ-генератора с целью повышения КПД генерации излучения.

Техническим результатом данного решения является увеличение эффективности использования энергии пучка электронов.

Технический результат в заявляемом устройстве достигается за счет того, что в отличие от известного клистрона, содержащего установленный в вакуумной камере и подключенный к внешнему источнику питания катод, анод, систему резонаторов, коллектор, средство вывода излучения, а также устройство для создания ведущего магнитного поля, в предлагаемом клистроне устройство для создания ведущего магнитного поля состоит из последовательно включенных соленоидов двух типов, имеющих разную индуктивность, установленных таким образом, что соленоиды с меньшей индуктивностью расположены напротив зазоров резонаторов.

За счет этого улучшается взаимодействие пучка электронов с электрическим полем резонаторов, что позволяет увеличить эффективность преобразования энергии электронного пучка в СВЧ-излучение.

Посредством сравнения прототипа с заявляемым устанавливаем, что принцип действия устройства основан на следующем. Диаметр катода выбирается с таким расчетом, чтобы электроны пучка не осаждались на стенки трубы дрейфа, поэтому при обычной конфигурации магнитного поля пучок проходит на значительном расстоянии от резонаторов, из-за чего электроны неэффективно взаимодействуют с электрическим полем резонаторов. В заявляемом генераторе за счет уменьшения магнитного поля в районе зазоров резонаторов, обеспечиваемого определенной последовательностью размещения соленоидов различного типа, траектория движения электронов изгибается и проходит вблизи зазоров, что повышает эффективность их взаимодействия с электрическим полем резонаторов.

Таким образом, за счет применения соленоидов с разной индуктивностью и особенностью их размещения более эффективно используется энергия пучка электронов и поэтому повышается КПД генерации СВЧ-излучения.

На фиг.1 схематически изображен клистрон и подключение питания к устройству, на фиг.2 более детально изображена траектория движения пучка электронов в электрическом поле зазора резонатора.

Заявляемый генератор представляет собой расположенный в вакуумной камере 4 катод 2, анод 3, резонаторы 6 и коллектор для сбора электронов 10. Траектория движения пучка электронов 5 совпадает с силовыми линиями магнитного поля, создаваемого последовательностью соленоидов двух типов 7 и 8, имеющих разную индуктивность. При этом индуктивность соленоидов 7 больше, чем индуктивность соленоидов 8, которые расположены в местах установки резонаторов, благодаря чему пучок эффективней взаимодействует с электрическим полем 11 резонаторов. Энергия электронов преобразуется в энергию СВЧ-колебаний и поступает через вывод энергии 9 в атмосферу. К диоду прикладывается высоковольтное напряжение от внешнего источника питания 1.

В качестве источника питания можно использовать генератор импульсного напряжения, выполненного, например, по схеме Аркадьева-Маркса [2] (Месяц Г.А. "Генерирование мощных наносекундных импульсов", М.: Атомиздат, 1972).

Устройство работает следующим образом. При подаче импульсного напряжения от внешнего источника питания 1 на катод 2 с поверхности катода инжектируется пучок электронов. С целью транспортировки пучка вдоль резонаторов до коллектора используется продольное магнитное поле. Соленоиды 8 имеют меньшую индуктивность по сравнению с соленоидами 7 и, соответственно, создают меньшее магнитное поле, при этом соленоиды 8 расположены напротив зазоров резонаторов. Благодаря этому траектория движения пучка электронов 5 изгибается в районе зазоров, электроны проходят ближе к зазорам, там, где сильнее электрическое поле (фиг.2). Таким образом, взаимодействие электронного пучка с электрическим полем зазора резонатора увеличивается, электроны отдают больше энергии резонатору для преобразования ее в высокочастотную электромагнитную энергию. Таким образом, увеличивается эффективность преобразования энергии пучка электронов в СВЧ-излучение. Излучение выводится в атмосферу через вывод энергии 9.

В примере выполнения предложенного СВЧ-генератора катод выполнен из тонкостенной нержавеющей стали, резонаторы изготовлены из меди. Коллектор, предназначенный для сбора электронов, прошедших зазор последнего резонатора, и рассеивания в виде тепла оставшейся кинетической энергии пучка, представляет собой толстостенный медный цилиндр. Внутренние полости генератора вакуумируются до давления остаточного газа ~10-5 Тор.

Таким образом, благодаря повышению эффективности преобразования энергии пучка электронов в энергию СВЧ-излучения за счет улучшения условий взаимодействия пучка с электрическим полем зазоров резонаторов КПД генератора увеличен.

Клистрон, содержащий установленный в вакуумной камере и подключенный к внешнему источнику питания катод, анод, систему резонаторов, коллектор, устройство для создания ведущего магнитного поля, а также средство вывода излучения, отличающийся тем, что устройство для создания ведущего магнитного поля состоит из последовательно включенных соленоидов двух типов, имеющих разную индуктивность, установленных таким образом, что соленоиды с меньшей индуктивностью расположены напротив зазоров резонаторов.



 

Похожие патенты:

Изобретение относится к области электронной техники, а именно к миниатюрным «прозрачным» лампам бегущей волны (ЛБВ) миллиметрового или сантиметрового диапазонов длин волн средней и большой мощности с высоким коэффициентом усиления с замедляющей системой типа цепочки связанных резонаторов.

Изобретение относится к технике СВЧ, может быть использовано при разработке мощных источников сверхвысокочастотного излучения для целей радиолокации, навигации и техники ускорителей элементарных частиц.

Изобретение относится к сверхвысокочастотной технике, в частности к устройствам генерации электромагнитного излучения на основе колебаний виртуального катода (ВК), и может быть использовано при создании генераторов сверхвысокочастотного (СВЧ) излучения.

Изобретение относится к электронной технике, в частности к усилительным приборам СВЧ типа лампы бегущей волны (ЛБВ), используемой в качестве генераторов, усилителей, переключателей тока и других устройств.

Изобретение относится к области техники СВЧ и лампа бегущей волны может быть использована в различной радиоэлектронной аппаратуре, в частности, предназначенной для многоцелевой радиолокации, для дальней тропосферной и космической связи, а также в современных средствах радиоэлектронного подавления информационных каналов систем управления оружием.

Изобретение относится к радиоэлектронике, в частности к СВЧ-приборам клистронного типа, предназначенным для получения СВЧ-мощности на нескольких кратных частотах.

Изобретение относится к электронной технике, а именно к вакуумным СВЧ генераторам на основе СВЧ приборов пролетного типа с большими углами пролета, например к монотронам.

Изобретение относится к области СВЧ техники и предназначено для увеличения функциональных возможностей усилителя СВЧ сигнала - лампы бегущей волны (ЛБВ). .

Изобретение относится к радиоэлектронике, в частности к электровакуумным СВЧ-приборам, предназначенным для получения СВЧ-мощности на двух кратных частотах, и может быть использовано, например, в радиолокации, радиопротиводействии и в других областях техники.

Изобретение относится к области релятивистской высокочастотной электроники и может быть применено для генерации мощного СВЧ излучения. .

Изобретение относится к электровакуумным СВЧ-приборам с поперечно-протяженным взаимодействием и может быть использовано также в радиолокационной технике и аппаратуре связи

Изобретение относится к области электронной техники и может быть использовано при изготовлении резонаторных и замедляющих систем электровакуумных СВЧ приборов, в частности генераторов и усилителей миллиметрового и субмиллиметрового диапазона

Изобретение относится к области радиофизики и СВЧ-электроники и предназначено для генерации высокочастотных (ВЧ) и сверхвысокочастотных (СВЧ) широкополосных хаотических колебаний разного уровня мощности

Изобретение относится к области релятивистской высокочастотной электроники и может быть использовано для генерации мощного СВЧ-излучения

Изобретение относится к радиотехнике и электронике сверхвысоких частот, а именно к устройствам для генерации последовательностей импульсов с хаотическим СВЧ заполнением среднего и большого уровня мощности, и может быть использовано в различных системах радиолокации и системах связи на основе хаотических сигналов

Изобретение относится к электронике сверхвысоких частот, а именно к устройствам для генерации широкополосных хаотических СВЧ-колебаний среднего уровня мощности, и может быть использовано в различных системах радиолокации, радиопротиводействия, системах связи на основе хаотических сигналов, установках промышленного применения, а также в устройствах медицинского назначения

Изобретение относится к электровакуумным микроволновым приборам, а именно к многолучевым многорезонаторным широкополосным клистронам

Изобретение относится к электровакуумным микроволновым приборам, а именно к многолучевым многорезонаторным широкополосным клистронам

Изобретение относится к радиотехнике и электронике сверхвысоких частот, а именно к управляемым устройствам для генерации широкополосных хаотических СВЧ-колебаний среднего уровня мощности и может быть использовано в различных системах радиолокации, радиопротиводействия, системах связи на основе хаотических сигналов, установках промышленного применения, а также в устройствах медицинского назначения

Изобретение относится к нерелятивистской электронике сверхвысоких частот, а именно к устройствам для генерирования широкополосных шумоподобных СВЧ колебаний малого и среднего уровня мощности, и может быть использовано в различных системах радиолокации, радиопротиводействия, системах связи на основе хаотических сигналов, установках промышленного применения, а также в устройствах медицинского назначения
Наверх