Состав стекла, стойкого к воздействию щелочей и кислот, полученное из него стекловолокно и композит, содержащий стекловолокно


 


Владельцы патента RU 2406702:

СЭНТ-ГОБЭН ВЕТРОТЕКС ФРАНС С.А. (FR)

Изобретение относится к составу стекла, стойкого к воздействию щелочей и кислот, полученному из него армирующему стекловолокну и композитам, содержащим указанное стекловолокно. Состав стекла включает в вес.%: SiO2≥58%, предпочтительно ≤65%; ZrO2 15-20%; R2O (R=Na, K или Li)≥14%; K2O≤0,1%, предпочтительно ≤0,05%; RO (R=Mg, Ca или Sr) 2,5-6%; MgO≤4%; TiO2≥1 и ≤4%; менее 1% примесей (Al2O3, Fe2O3, Cr2O3), и не содержит F при следующих соотношениях компонентов: ZrO2+TiO2≥17%; ZrO2/TiO2≥6. Стекловолокно, полученное из такого состава, может быть использовано для армирования неорганических материалов, например цемента, или органических материалов, например пластиков. Технический результат изобретения - получение стекловолокна, стойкого к воздействию щелочей и кислот. 4 н. и 10 з.п. ф-лы, 1 табл.

 

Изобретение касается состава стекла, стойкого к воздействию щелочей и кислот, из которого изготавливают стекловолокно для усиления неорганических или органических материалов, получаемого стекловолокна и усиленных (или композитных) материалов, содержащих такое стекловолокно.

С давних пор стойкое к щелочам стекловолокно используют для усиления материалов с высоким содержанием щелочей, например, изготовляемых на основе цемента. Однако смешанное с цементом стекловолокно постепенно разрушается, и, в конце концов, его нити рвутся. В таком состоянии стекловолокно не может должным образом выполнять свою функцию усиления: механические свойства усиливаемого материала, в частности предел прочности на разрыв и предел прочности на изгиб, ухудшаются, делая материал более хрупким.

Обычно стойкости стекла к щелочам добиваются, добавляя в стекло оксид циркония ZrO2. Однако ZrO2 значительно повышает вязкость стекломассы и температуру формования (то есть температуру, при которой вязкость стекломассы равна 103 пуаз, обозначаемую TLog ή=3), что приводит к повреждению фильеры, из которой филаментарное волокно выходит и механически вытягивается, прежде чем сформировать стеклянную нить или нити.

Кроме того, введение ZrO2 в стекломассу повышает температуру ликвидуса стекла (то есть температуру появления первых кристаллов при медленном охлаждении расплавленного стекла, обозначаемую Tliq), увеличивая риск расстеклования при плавлении и формировании нитей, от чего филаментарное волокно рвется.

Поэтому известные составы стойкого к щелочам стекла обычно содержат относительно немного ZrO2 и других веществ, чтобы стеклянные нити формировались в приемлемых условиях.

Некоторые составы стекла, содержащие по весу от 8 до 25% ZrO2, описаны в патентах SU-A-151298, DD-A-293105 и US-B-6627569. Другие составы стекла, в которые добавлен TiO2 для улучшения условий образования волокна, описаны в патентах WO-A-92/06931, US-B-5064785, CN-A-1500763 и CN-А-1046147.

В патенте US-B-4345037 описаны стойкие к воздействию щелочей виды стекловолокна, служащего для усиления цемента. Они содержат по весу от 0,1 до 1% Cr2O3 и от 0,5 до 16% хотя бы одного оксида редкоземельного элемента и TiO2. Их стойкости к щелочам добиваются расплавлением в неокисляющих условиях, когда значительная часть хрома находится в форме трехвалентного хрома. Однако такие волокна могут содержать шестивалентный хром, известный своими токсическими свойствами, представляющими опасность для живых существ.

Впрочем, стекловолокно, содержащее ZrO2, используется и для усиления пластмасс типа полиэфирных смол.

В патенте GB-A-965018 описан процесс изготовления стеклянных нитей с высокой светопередачей, основанной на сочетании ZrO2 в количестве от 3 до 10% с Al2O3 в количестве от 4 до 12% и СаО в количестве от 3 до 10%. Кроме того, такие стеклянные нити обладают высокой гидролитической стойкостью и хорошей стойкостью к воздействию кислот.

Предметом настоящего изобретения является состав стекла, из которого можно получать стекловолокно для усиления как щелочных материалов, в частности, на основе цемента, так и пластмасс, контактирующих с кислотами. Стекло с таким составом может использоваться в обычных условиях, на существующих и недорогих установках для производства стекловолокна.

Это достигается благодаря особому составу стойкого к щелочам и кислотам стекла, служащего для производства стекловолокна. Такое стекло характеризуется тем, что содержит следующие компоненты в указанных ниже количествах, выраженных в процентах в весовом отношении:

SiO2 ≥58%, предпочтительно ≤ 65%
ZrO2 15-20%
R2O (R=Na, K или Li) ≥14%
K2O ≤0,1%, предпочтительно ≤ 0,05%
RO (R=Mg, Ca или Sr) 2,5-6%
MgO ≤4%
TiO2 >1 и ≤4%

Кроме того, в этом стекле вообще нет фтора, оно содержит менее 1% примесей (Al2O3, Fe2O3, Cr2O3) и обеспечивает следующие соотношения:

ZrO2+TiO2≥17%

ZrO2/TiO2≥6.

В частности, состав стекла, являющегося предметом изобретения, характеризуется тем, что разница между температурой формования нитей (TLog ή=3) и температурой ликвидуса (Tlig) составляет минимум 60°С, что достаточно для того, чтобы образование стекловолокна проходило в нормальных условиях. Предпочтительно, чтобы эта разница составляла не менее 80°С.

Кроме того, температура формования не превышает 1320°С (предпочтительно 1310°С), что соответствует вполне приемлемой температуре, не вызывающей слишком интенсивного нагрева стекла и позволяющей максимально уменьшить износ фильеры.

Согласно другому воплощению изобретения состав стекла обеспечивает соотношение Na2O/ZrO2≥0,75.

Согласно изобретению оксид SiO2 образует решетку стекла, играя основную роль в обеспечении его стабильности. Если содержание SiO2 ниже 58%, вязкость стекломассы становится слишком слабой и риск расстеклования во время образования волокна возрастает. Обычно содержание SiO2 поддерживается на уровне 65% или ниже, так как при его превышении стекломасса становится очень вязкой и тугоплавкой. Предпочтительно, чтобы содержание в ней SiO2 находилось в пределах от 59 до 63%.

Оксид ZrO2 играет главную роль в придании стойкости к воздействию щелочей; следовательно, его содержание должно быть не ниже 15%. Кроме того, ZrO2 улучшает стойкость к воздействию кислот. Предпочтительно содержание TiO2 не менее 1% при содержании ZrO2 свыше 18%, чтобы можно было получить достаточную температуру ликвидуса. При содержании ZrO2 свыше 20% возрастает риск расстеклования во время образования волокна.

Оксиды NaO2 и Li2O используются в качестве флюса для улучшения плавки, позволяя, в частности, уменьшить вязкость и получить наилучшую солюбилизацию (коллоидное растворение) ZrO2 в стекломассе. Предпочтительно содержание Li2O ниже 0,5%, чтобы не завышать стоимость стекла (сырье для производства Li2O дорого), но еще лучше, если это вещество будет вовсе в нем отсутствовать.

Наличие в стекле K2O в качестве флюса нежелательно, в основном, по причине высокой стоимости содержащего этот оксид сырья, которая является важной составляющей стоимости готового стекла. K2O может присутствовать как примесь в обратимых в стекло исходных материалах в количестве, равном 0,1% или меньшем (предпочтительно равном или меньшем 0,05%, или еще лучше, если K2O будет вообще отсутствовать в стекломассе).

Согласно изобретению содержание R2O должно быть не ниже 14%. Предпочтительно, если оно будет ниже 18%, чтобы не ухудшилась гидролитическая стойкость стекла.

Оксиды MgO, СаО и SrO позволяют регулировать вязкость стекломассы и контролировать процесс расстеклования. Содержание MgO поддерживается на уровне ниже 4%, чтобы сохранять приемлемую температуру ликвидуса, обычно не доходящую до 1220°С. Предпочтительно, если это вещество будет вообще отсутствовать. Обычно в составе стекла совсем не содержится SrO.

Содержание RO колеблется между 2,5 и 6%. При его содержании ниже 2,5% снижается гидролитическая стойкость стекла. При содержании свыше 6% снижается растворимость ZrO2 в стекломассе.

Оксид TiO2 играет роль разжижителя и содействует повышению стойкости к воздействию щелочей и кислот. Содержание TiO2 должно быть выше 1%. При содержании выше 4% возрастает риск расстеклования и стекло приобретает весьма интенсивную желтую окраску.

В составе стекла отсутствует F, нежелательный элемент, который генерирует загрязняющие выбросы во время плавки и разъедает огнеупорные элементы печи.

Согласно изобретению стекломасса может содержать до 1% неизбежных примесей, привносимых исходными материалами для производства стекла и/или отходящих от огнеупорных элементов печи. Примеси состоят из Al2O3, оксидов железа (Fe2O3) и Cr2O3. Обычно содержание Al2O3 ниже 0,5%. Предпочтительно содержание Fe2O3 не свыше 0,5%, чтобы неисправимо не испортить цвет стекловолокна и не нарушить функционирование установки по его производству, в частности процессы теплопередачи в печи. Лучше, если содержание Cr2O3 будет ниже 0,05%, а еще лучше, если этот оксид будет вообще отсутствовать.

Из стекломассы описанного выше состава стекловолокно получают следующим образом: из многочисленных отверстий, расположенных в нижней части одной или нескольких фильер, вытягивается множество струй расплавленного стекла в форме одного или нескольких пластов непрерывных волокон, соединяемых затем в одну или несколько нитей и собираемых на движущейся подставке. Эта подставка может вращаться, если нити собираются в форме витков, или находиться в поступательном движении, если нити обрезаются устройством, одновременно служащим для их вытяжки, или если нити выбрасываются устройством, служащим для их вытяжки в форме мата.

Полученное стекловолокно может иметь, возможно, в результате иных операций обработки, разную форму: нити непрерывные или обрезные, тканые или трикотажные материалы, жгуты, ленты или маты, состоящие из волокон диаметром приблизительно от 5 до 30 микрон.

Расплавленное стекло, подающееся в фильеры, получают из исходных материалов, чистых или чаще всего природного происхождения (то есть в них могут содержаться примеси в ничтожных количествах). Эти материалы смешиваются в соответствующих пропорциях, а затем плавятся. Температура расплава регулируется традиционным способом, чтобы обеспечить образование волокон и избежать проблем, порождаемых расстеклованием. До собирания в нити волокна обычно покрываются замасливающим составом, защищающим их от абразии и облегчающим их последующее соединение с усиливаемыми материалами. Замасливающий состав может быть на водной или безводной основе (содержащий менее 5% растворителя в весовом отношении), например, таким, который описан в патентах WO-A-01/90017 и FR-A-2837818.

При необходимости, до и/или после их формирования стекловолокно может подвергаться тепловой обработке в целях просушки и/или полимеризации замасливателя.

Полученное стекловолокно может использоваться для усиления неорганических материалов, в частности, с большим содержанием щелочей, таких как материалы на цементе и органические материалы, в частности пластмассы.

Среди неорганических материалов, которые можно усиливать, материалы на основе цемента: цемент, бетон, строительный раствор, гипс, шлак, составы, получаемые в результате реакции извести, кремния и воды, смеси этих исходных материалов с другими материалами, например смеси цемента, полимерных материалов и наполнителей (обмазок).

Усиление может осуществляться непосредственно, путем добавления стекловолокна в цементные составы, или косвенно, с помощью стекловолокна, предварительно смешанного с органическим материалом, например, чтобы формировать композитные элементы, используемые в качестве арматуры для железобетона.

Согласно изобретению органическими материалами, которые можно усиливать стеклянными нитями, являются термопластичные или термореактивные пластмассы, предпочтительно термореактивные.

В качестве примера, среди термопластичных пластмасс можно упомянуть такие полиолефины, как полиэтилен, полипропипен и полибутилен, такие полиэфирные смолы, как терефталат полиэтилена и терефталат полибутилена, полиамидные волокна, полиуретановое волокно и смеси этих материалов.

В качестве примера, среди термореактивных пластмасс можно упомянуть полиэфирные волокна, например винилово-эфирные, фенолформальдегидные, эпоксидные, полиакриловые смолы и смеси этих материалов. Предпочтительны винилово-эфирные смолы, в частности, изофталевого типа, более устойчивые к коррозии.

Как указывалось выше, стекловолокно можно использовать в виде непрерывных нитей (например, в форме «пирожков» или стекловолокнистой ткани (Stratifil), сеток, тканых материалов) или отрезных нитей (например, в форме нетканых материалов, таких как покрывала или маты). Их внешний вид зависит от усиливаемого материала и применяемой технологии.

Согласно изобретению непрерывные стеклянные нити могут использоваться для изготовления полых изделий, таких как трубы или цистерны, известным методом намотки филаментарного стекловолокна, который заключается в помещении усилителя, например куска стекловолокнистой ткани (Stratifil), пропитанного органическим веществом, на сердечник, вращающийся вокруг своей оси. Такие полые изделия предназначаются, в частности, для сбора и отвода сточных вод (трубы), хранения и транспортировки химических продуктов (цистерны и контейнеры). Что касается отрезных нитей, они используются для усиления красок или мастик, приготовления композитов методом контактного формования.

Мотки нитей могут служить для изготовления сеток (решеток) или тканых материалов, вводимых в материалы на основе цемента для уменьшения их подверженности растрескиванию и разрушению в результате землетрясений или при ремонте инженерных сооружений (мостов, туннелей, дорог и т.п.). Намотанные нити могут использоваться и в производстве композитных профилей методом интрузии, то есть пропускания пропитанного органическим веществом усилителя через нагретую фильеру. Такие композитные профили используются, в частности, в качестве строительных конструкций в тех отраслях промышленности, где материалы должны обладать повышенной стойкостью к щелочам и кислотам, например в химической, нефтяной промышленности и в портовом хозяйстве.

Обычно стеклянные нити включаются в усиливаемые органические и неорганические материалы в такой пропорции, чтобы стекло составляло по объему от 15 до 80% конечного материала, предпочтительно от 20 до 60% его объема.

В конечном композитном продукте стекловолокно может быть единственным элементом, усиливающим органический или неорганический материал, или сочетаться в нем с другими элементами, такими как металлическая проволока и/или минералы, в частности керамика.

Состав стекла, соответствующий изобретению, позволяет получать стекловолокно, стойкость которого к щелочам сравнима со стойкостью стекловолокна, используемого для усиления щелочных материалов при повышении стойкости к воздействию кислот, на традиционных установках, не изменяя условия их эксплуатации, это стекло экономично в производстве.

Композитные материалы, изготавливаемые с применением этого усиливающего стекловолокна, обладают высокими механическими свойствами в коррозионной, щелочной, кислотной и влажной среде, в частности, когда эта среда может со временем изменяться; улучшение их свойств явно наблюдается в условиях кислотной коррозии.

Приводимые ниже примеры позволяют иллюстрировать изобретение без ограничения его.

Нити из стеклянных волокон диаметром 17 микрон получают путем вытяжки струй расплавленного стекла, состав которого указан в Таблице в весовом процентном содержании.

На своем пути нити покрывают замасливателем на водной основе, а затем собирают в нити, которые, в свою очередь, образуют мотки.

В производстве стекловолокна для усиления материалов, содержащих цемент, используется обычный замасливатель, способный предотвращать растрескивание бетона (anti-crack HD® компании Сэнт-Гобэн). Получаемые нити собираются в форме «пирожков».

В производстве стекловолокна для усиления пластмасс используется замасливатель, подобный описанному в Примере 1 патента FR 2809389. Нити собираются в виде стекловолоконной ткани (Stratifil).

Стекловолокно сушится при температуре 130°С в течение 12 часов перед включением его в изделия из цемента или пластика для образования композитов.

Использование стекловолокна и механические испытания композитных материалов описаны ниже.

А - Усиление изделий из цемента

Формируют композитный материал, содержащий стеклянную нить, центральная часть которой вставлена в цементный блок. Нить помещают в центре формы со следующими внутренними размерами: L=30 мм, Н=10 мм, Р=10 мм, после чего форма заполняется цементной смесью следующего состава: 75 частей цемента «Портленд», 25 частей песка и 32 части воды. Композит обрабатывается при температуре 20-25°С и относительной влажности 90-100% в течение 24 часов.

Затем композит подвергается испытанию на старение путем погружения в воду с температурой 80°С на 4 суток. Затем на композите измеряют предел прочности на разрыв при растяжении в мПа, условно называемый «пределом прочности SIC» (Stand in Cement). Предел прочности SIC характеризует чувствительность к щелочному воздействию цемента на стекло.

Величины предела прочности SIC и превышение ими (в %) величин, указанных в Примере 11 (эталон), даются в Таблице.

В - усиление пластмасс

Стекловолокно используется для изготовления композитных пластин с параллельными нитями в соответствии со стандартом ISO 1268-5. Усиливаемой смолой вляется изофталевая полиэфирная смола, продаваемая под названием «Synolite 1717» компанией «DSM». В эту смолу добавляют 1,5 части отвердителя (TRIGONOX HM, продается компанией «AKZO») на 100 весовых частей смолы.

Каждая пластина содержит 50% стекла по весу, и ее толщина равна 3 мм. После этого пластины обрабатываются при температуре 80°С в течение 2 часов, а затем при температуре 120°С в течение 4 часов, чтобы завершилось образование полной сетчатой структуры смолы. Пластины делятся на две группы, которые проходят следующие испытания:

a) Предел прочности при изгибе

На пластинах первой группы измеряется предел прочности при изгибе в трех точках в соответствии со стандартом ISO 14125, в мПа, до и после обработки в кипящей воде в течение 24 часов. Величина предела прочности при изгибе для 100% стекла приводится в Таблице.

Величина предела прочности при изгибе характеризует стойкость стекловолокна к воздействию воды в условиях ускоренного старения.

b) Стойкость к воздействию кислот

Пластины второй группы защищаются по краям слоем эпоксидной смолы толщиной 1-2 мм. Затем каждая пластина подвергается постоянному напряжению при изгибе в трех точках в растворе кислоты (HCl 1 N; 25°С). Измеряется время разрушения композита в условиях напряжения разрушения при изгибе (стандарт ISO 14125) и строят кривую предела прочности при изгибе в зависимости от времени. По этой кривой определяют величину напряжения при изгибе («предел прочности CSC» - Corrosion Sous Contrainte = Коррозия под напряжением) в мПа, необходимую для разрушения композита после 1000 часов старения.

Результаты измерения предела прочности CSC даются в Таблице.

Примеры с 1 по 6 являются примерами согласно изобретению, а примеры с 7 по 11 приведены для сравнения.

Примеры с 7 по 9 соответствуют составам стекла с весовым соотношением ZrO2/TiO2 ниже 6.

Пример 10 соответствует составу стекла для производства стекловолокна, устойчивого к воздействию щелочей, используемого для усиления материалов, содержащих цемент (Cem-FIL®, продаваемых компанией «Сэнт-Гобэн Ветротекс»).

Пример 11 соответствует другому составу на основе K2O, позволяющему получать стекловолокно, стойкое к воздействию щелочей, служащее для усиления материалов на основе цемента.

Согласно изобретению стекловолокно сочетает в себе высокие показатели стойкости к воздействию щелочей (в частности, показатель предела прочности SIC улучшен по сравнению с Примером 10 и сравним с показателями в Примере 11) с более высокой стойкостью к воздействию кислот.

Кроме того, разница температур TLog ή=3 - Tlig значительно выше величин, указанных в сравнительных примерах с 7 по 9, и сопоставима с величинами, указанными в Примере 10.

Примеры 1 2 3 4 5 6 7 8 9 10 11
SiO2 (%) 61,10 60,10 61,60 60,60 59,85 59,85 59,10 5910 61,10 61,80 60,25
ZrO2 (%) 17,50 17,05 17,05 18,05 19,00 18,00 18,05 18,05 1705 16,70 19,20
Al2O3 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,25
Na2O (%) 14,00 14,45 14,45 14,45 16,00 16,05 13,45 14,45 13,45 14,80 13,95
CaO (%) 5,00 5,75 4,25 4,25 3,00 3,00 5,75 4,75 4,75 5,80 0,60
TiO2 (%) 2,00 2,25 2,25 2,25 1,75 2,25 3,25 3,25 3,25 0,10 1,90
K2O (%) - - - - - - - - - - 2,35
Li2O - - - - - - - - - - 1,1
ZrO2+TiO2 (%) 19,50 19,30 19,30 20,30 20,75 20,25 21,30 21,30 20,30 17,00 21,00
ZrO2/TiO2 (%) 9,00 8,00 8,00 8,00 11,00 8,00 5,6 5,6 5,00 167,00 10,00
TLog ή=3 1300 1281 1300 1302 1303 1283 1299 1293 1280 1290 1287
Tliq (°C) 1200 1190 1170 1190 1210 Н.д. 1300 1270 1250 1180 1140
TLog ή=3-Tliq (°C) 100 91 130 112 93 Н. -1 23 30 110 147
Стойкость к воздействию щелочей Напряжение разрушения SIC (мПа)
Н.д. Н.д. Н.д. 425 (+21%) Н.д. Н.д. Н.д. Н.д. Н.д. 350 430
Влажное старение
До (мПа)
После (мПа)
Остаточное напряжение разрушения при изгибе (%)
Н.д. Н.д. Н.д. 2180 Н.д. Н.д. Н.д. Н.д. Н.д. 2350 Н.д.
Н.д. Н.д. Н.д. 960 Н.д. Н.д. Н.д. Н.д. Н.д. 1110 Н.д.
Н.д. Н.д. Н.д. 45 Н.д. Н.д. Н.д. Н.д. Н.д. 47 Н.д.
Стойкость к воздействию кислот
Напряжение разрушения CSC (мПа)
Н.д. Н.д. Н.д. 950 Н.д. Н.д. Н.д. Н.д. Н.д. 700 Н.д.
Н.д. - нет данных

1. Состав стекла, стойкого к воздействию щелочей и кислот, для изготовления усиливающего стекловолокна, включающий, вес.%:

SiO2 ≥ 58%, предпочтительно ≤65%
ZrO2 15-20%
R2O (R=Na, К или Li) ≥14%
K2O ≤0,1%, предпочтительно ≤0,05%
RO(R=Mg, Са или Sr) 2,5-6%
MgO ≤4%
TiO2 <1 и ≤4%

менее 1% примесей (Al2O3, Fe2O3, Cr2O3) и имеет следующие соотношения: ZrO2+TiO2≥17%
ZrO2/TiO2≥6.

2. Состав стекла по п.1, в котором соотношение Na2O/ZrO2≥0,75.

3. Состав стекла по п.1, в котором содержание Li2O составляет менее 0,5%, а предпочтительно равно нулю.

4. Состав стекла по п.1, в котором содержание R2O составляет менее 18%.

5. Состав стекла по п.1, в котором отсутствует SrO.

6. Состав стекла по п.1, который обеспечивает разницу между температурой формования нитей (TLogη=3) и температурой ликвидуса TLig не менее 60°С, предпочтительно 80°С.

7. Состав стекла по п.6, у которого температура формования не превышает 1320°С, предпочтительно 1310°С.

8. Стекловолокно для усиления органических или неорганических материалов, полученное из состава стекла по любому из пп.1-7.

9. Применение стекловолокна по п.8 для усиления неорганических материалов, особенно содержащих много щелочи, таких как материалы на основе цемента, и органических материалов, в частности пластиков.

10. Композит из стекловолокна и неорганических или органических материалов, содержащий стекловолокно по п.8.

11. Композит по п.10, в котором неорганический материал выбирают из содержащих цемент материалов, таких как цемент, бетон, строительный раствор, гипс, шлак и вещества, образованные в результате реакции между известью, кремнием и водой.

12. Композит по п.10, в котором органический материал выбирают из термопластичных или термореактивных пластиков.

13. Композит по п.12, в котором термопластичный материал выбирают из полиолефинов, полиэфирных смол, полиамидов, полиуретанов и смесей этих компонентов.

14. Композит по п.12, в котором термореактивный материал выбирают из полиэфирных, фенолоформальдегидных, эпоксидных, полиакриловых смол и смесей этих компонентов.



 

Похожие патенты:
Изобретение относится к области технологии силикатов и касается составов стекла для стекловолокна, которое может быть использовано для изготовления фильтров, применяемых в производстве химических, биологически активных веществ, лекарственных препаратов.
Изобретение относится к химической промышленности, преимущественно к производству стекловолокнистых материалов, предназначенных для изготовления стеклополимерных композитов.

Изобретение относится к области технологии силикатов и касается составов стекла, применяемого для выработки волокна, преимущественно фильерным способом. .

Изобретение относится к составам стекол для производства высокопрочного высокомодульного непрерывного стеклянного волокна, которое может быть использовано для создания композиционных стеклопластиков, применяемых в промышленности высоких технологий, в частности для баллонов высокого давления, предназначенных для перевода легкового, грузового и воздушного транспорта на природный газ.

Изобретение относится к технологии получения неорганических волокон из расплавленных минералов вытягиванием, которые могут использоваться для получения термостойких нитей и тканей.

Изобретение относится к составам стекол для выработки стеклянного волокна. .

Изобретение относится к составам стекол, предназначенных для производства непрерывных и грубых волокон, которые могут быть использованы для получения различных тканей и нетканых материалов, фильтров, для армирования цементных и гипсовых вяжущих, а также полимеров и других целей.
Изобретение относится к термостойкому стекловолокну, которое используют для повышения прочности композиционных материалов
Изобретение относится к составу стекла, устойчивого к воздействию химических сред, для изготовления упрочняющих нитей, а также к упрочняющим нитям, полученным из этой композиции, и к композиту из органического или неорганического материала, содержащему такие нити
Изобретение относится к стекольной промышленности, преимущественно к созданию стекловолокна, обладающего особыми свойствами
Изобретение относится к составам стекол для производства высокомодульного, прочного и химически стойкого стекловолокна, которое может быть использовано для изготовления ровингов и тканей различного назначения, а также в качестве армирующих материалов для стеклопластиковых изделий, используемых в кислых и щелочных средах. Техническим результатом изобретения является повышение коэффициента полезного времени процесса формования волокна и снижение капельной обрывности, т.е. повышение производительности стеклоплавильного сосуда. Стекло для производства непрерывного стекловолокна содержит компоненты в следующем соотношении, мас.%: SiO2 50,0-60,0; Al2O3 10,0-20,0; СаО 12,0-16,0; MgO 6,0-10,0; TiO2 4,0-10,0; R2O (Na2O+K2O) 0,1-0,7; ZrO2 0,01-0,4; Fe2O3 0,01-0,5, причем стекло обладает низкой температурой верхнего предела кристаллизации 1240°С и химической стойкостью - 1-й гидролитический класс. 1 табл.
Изобретение относится к составу непрерывного базальтового волокна и технологии его получения и может быть использовано в химической и строительной промышленности, в частности для армирования бетонов. Непрерывное волокно на основе базальта содержит следующие компоненты в мас.%: оксид алюминия 11,5-19,5; смесь оксидов железа 7,0-13,5; оксид титана 0,5-5,0; оксид кальция 7,0-15,5; оксид магния 2,5-11,0; оксид калия 0,5-2,5; оксид натрия 1,5-3,5; оксид циркония 1,0-16,5; оксид лантана 0,5-5,5 и оксид кремния - остальное. Раскрывается также способ изготовления данного непрерывного волокна. Изобретение позволяет получить непрерывное базальтовое волокно с улучшенной щелочестойкостью и повышенными прочностными свойствами. 1 з.п. ф-лы, 1 табл.
Наверх