Способ получения фосфоросиликатных пленок

Изобретение относится к технологии получения защитных пленок полупроводниковых приборов и интегральных схем. Сущность изобретения заключается в способе получения фосфоросиликатных пленок, обработку подложек проводят смесью трихлорида фосфора, кислорода и окиси азота при следующем соотношении расходов газов: трихлорида фосфора - РСl3=18 л/ч; кислорода - O2=20±0,5 л/ч, окиси азота - NO=200±10 л/ч. Обработку подложек ведут с предварительным нагревом их до температуры 250-400°С. Изобретение обеспечивает получение пленок фосфоросиликатного стекла при низких температурах.

 

Изобретение относится к технологии получения полупроводниковых приборов и интегральных схем (ИС), в частности к способам получения защитных пленок для формирования активной эмиттерной области.

Известны способы диффузии фосфора из твердого планарного источника, с применением жидких и газообразных источников [1].

Основным недостатком этих способов являются высокие температуры.

Образующиеся в процессе диффузии фосфора пленки фосфоросиликатного стекла (ФСС) являются хорошим средством геттерирования примесей в полупроводниковой технологии.

Целью изобретения является получение фосфоросиликатного стекла при низких температурах.

Поставленная цель достигается проведением процесса диффузии фосфора с применением диффузанта - трихлорида фосфора (РСl3).

Сущность способа заключается в том, что на поверхности подложки формируют слой фосфоросиликатного стекла при температурах 250-400°С осаждением из газовой фазы за счет реакции трихлорида фосфора (РСl3) с кислородом и окисью азота.

Термодинамические расчеты показывают, что в прямом направлении указанная реакция самопроизвольно может протекать с большой скоростью, так как свободная энергия Гиббса имеет отрицательное значение.

Предлагаемый способ отличается от известного тем, что в качестве окислителя используют кислород -О2 с добавкой окиси азота -NO, что снижает температуру процесса.

В предлагаемом способе процесс ведут из газовой фазы, содержащей трихлорид фосфора (РСl3), кислород и окись азота при расходе компонентов:

РСl3=18 л/ч; O2=20±0,5 л/ч, окись азота -NO=200±10 л/ч

При проведении процесса выше 400°С все большая часть окиси фосфора окисляется в газовой фазе, засоряя реакционную камеру и ухудшая качество образующейся пленки. Указанное соотношение компонентов обусловлено тем, что снижение и увеличение содержания окиси азота может привести к ухудшению качества фосфоросиликатного стекла.

Сущность изобретения подтверждается следующими примерами:

ПРИМЕР 1. Процесс проводят в реакторе с барабаном, на гранях которого размещены кремниевые пластины. После продувания реактора аргоном, нагревают кремниевые пластины, затем подают гомогенную смесь, состоящую из трихлорида фосфора, кислорода и окиси азота:

РСl3=10 л/ч; O2=20±0,5 л/ч, NO=300±10 л/ч

Температура равна 350°С, при этом на поверхности полупроводника формируется тонкопленочный диэлектрик фосфоросиликатного стекла.

ПРИМЕР 2. Способ осуществляют аналогично примеру 1. Процесс проводят при следующем соотношении расхода компонентов:

РСl3=10 л/ч; O2=20±0,5 л/ч, NO=250±10 л/ч

Температура равна 300°С, при этом на поверхности полупроводника формируется тонкопленочный диэлектрик фосфоросиликатного стекла.

ПРИМЕР 3. Способ осуществляют аналогично примеру 1. Процесс проводят при следующем соотношении расхода компонентов:

РСl3=15 л/ч; O2=20±0,5 л/ч, NO=250±10 л/ч

Температура 300°С, при этом на поверхности полупроводника формируется тонкопленочный диэлектрик фосфоросиликатного стекла.

ПРИМЕР 4. Способ осуществляют аналогично примеру 1. Процесс проводят при следующем соотношении расхода компонентов:

РСl3=15 л/ч; O2=20±0,5 л/ч, NO=200±10 л/ч

Температура 250°С, при этом на поверхности полупроводника формируется тонкопленочный диэлектрик фосфоросиликатного стекла.

ПРИМЕР 5. Способ осуществляют аналогично примеру 1. Процесс проводят при следующем соотношении расхода компонентов:

РСl3=18 л/ч; O2=20±0,5 л/ч, NO=200±10 л/ч

Температура 250°С, при этом на поверхности полупроводника формируется тонкопленочный диэлектрик фосфоросиликатного стекла.

Как следует из результатов опытов, уже при температуре 250°С при указанном соотношении расхода компонентов получают пленки фосфоросиликатного стекла с хорошими основными показателями. Предложенный способ позволяет снизить температуру до 250°С без ухудшения основных показателей пленок.

Таким образом, предлагаемый способ получения тонкопленочного диэлектрика из тетрахлорида фосфора из газовой фазы позволяет провести процесс при сравнительно низких температурах (250-400°С), что обеспечивает неизменность свойств таких низкотемпературных полупроводников, как германий и ряд соединений А111BV и А11BVI, и нет необходимости использования материалов и оборудования с высокой термической устойчивостью.

Источники информации

Готра З.Ю. Технология микроэлектронных устройств. М.: Радио и связь. 1991, стр.179-180.

Способ получения фосфоросиликатных пленок, включающий обработку подложек смесью трихлорида фосфора и кислорода при повышенной температуре, отличающийся тем, что подложки подвергают обработке смесью с добавкой окиси азота при расходе компонентов: трихлорида фосфора, кислорода и окиси азота при следующем соотношении газов: трихлорида фосфора - РСl3=18 л/ч; кислорода - О2=(20±0,5) л/ч, окиси азота - NO=(200±10) л/ч, обработку подложек ведут с предварительным нагревом их до температуры 250-400°С.



 

Похожие патенты:

Изобретение относится к технологии арсенид-галлиевой микроэлектроники, в частности к методам электрической пассивации поверхности полупроводниковых соединений и твердых растворов групп АIIIBV, и может быть использовано для снижения плотности поверхностных состояний как на свободной поверхности полупроводника, так и на границе раздела металл-полупроводник и диэлектрик-полупроводник.
Изобретение относится к области нанотехнологий и может быть использовано для изготовления сенсорных датчиков, приборов контроля составов газовых смесей, оптических приборов, в оптоэлектронике, наноэлектронике.
Изобретение относится к технологии получения полупроводниковых приборов, в частности к способам получения пленок, содержащих бор на поверхности полупроводниковых материалов.
Изобретение относится к технологии получения полупроводниковых приборов, в частности к способам получения пленочных диэлектриков, для маскирования поверхности кремниевых пластин при проведении диффузионных процессов.
Изобретение относится к технологии получения полупроводниковых приборов, в частности к способам получения защитных пленок. .
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления пленок с пониженной дефектностью. .
Изобретение относится к технологии получения полупроводниковых приборов, в частности к способам получения тонкопленочных конденсаторов. .

Изобретение относится к технологии осаждения диоксида кремния на подложке из раствора при низких температурах таким образом, чтобы получить гомогенный рост диоксида кремния.
Изобретение относится к области технологии полупроводниковых приборов. .
Изобретение относится к области металлооксидных полупроводниковых технологий. .

Изобретение относится к технологии выращивания оксидных слоев и может быть использовано при создании защитных либо пассивирующих покрытий на поверхности металла или полупроводника

Изобретение относится к технологии получения полупроводниковых приборов и может быть использовано в производстве твердотельных газовых датчиков паров углеводородов
Изобретение относится к технологии изготовления мощных транзисторов, в частности к методам получения защитных пленок для формирования активных областей p-n переходов
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур, с пониженной плотностью дефектов

Изобретение относится к технологии полупроводниковой микро- и наноэлектроники, а именно к золь-гель технологии получения сегнетоэлектрических тонких стронций-висмут-тантал-оксидных пленок на интегральных микросхемах, применяемых в частности в устройствах энергонезависимой памяти типа FRAM. Техническим результатом изобретения является обеспечение однородности изготавливаемой сегнетоэлектрической пленки, упрощение контроля над процессом приготовления золя и увеличение срока хранения исходного золя, снижение энергоемкости процесса и снижение его стоимости. В золь-гель способе формирования сегнетоэлектрической стронций-висмут-тантал-оксидной пленки готовят исходные растворы хлорида стронция, хлорида висмута и хлорида тантала. Каждый полученный раствор подвергают ультразвуковой обработке в течение 20-40 минут, выдерживают в течение суток при комнатной температуре и фильтруют. Смешивают растворы в один и выдерживают его в течение суток при комнатной температуре. Образуется пленкообразующий раствор, который наносят на подложку, сушат подложку с нанесенным пленкообразующим раствором при температуре 50-450°С и отжигают пленку в присутствии кислорода при температуре 700-800°С в течение 1-2 часов. В результате получают сегнетоэлектрическую стронций-висмут-тантал оксидную пленку. 5 ил.
Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к способам защиты поверхности p-n-переходов. Изобретение обеспечивает получение равномерной поверхности, уменьшение температуры и длительности процесса. В способе защиты p-n-переходов на основе окиси бериллия защита поверхности p-n-переходов осуществляется на основе пленки окиси бериллия вакуумным катодным распылением. Создание защитной пленки проводится в печи при температуре 1000°C, температура кристалла 600°С. Окись бериллия в виде порошка, а в качестве несущего агента используется галоген HBr. Устанавливается перепад температур между источником окиси бериллия и полупроводниковым кристаллом. Расстояние между источником окиси бериллия и кристаллом равно 12 см. Контроль толщины защитной пленки осуществляется с помощью микроскопа МИИ-4. Толщина пленки окиси бериллия δ=0,8±0,1 мкм.
Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к способам защиты кристаллов p-n-переходов. Техническим результатом изобретения является достижение стабильности и уменьшение температуры и длительности процесса. В способе защиты поверхности кристаллов p-n переходов на поверхность кристалла наносят слой защитного стекла, состоящего из смеси микропорошков со спиртом, в состав которого входят: 60% окиси кремния - SiO2 и 28% окиси бора - B2O3. После термообработки в вакууме при температуре 280±10°C в течение 18±2 минут образуется стеклообразная пленка толщиной 0,45±0,5 мкм. Далее производится ее сплавление с нижним слоем стекла при температуре 600°C.
Использование: для получения мощных кремниевых транзисторов, в частности к способам получения фосфоро-силикатных стекол для формирования p-n переходов. Сущность изобретения заключается в том, что кремниевые пластины загружают в кварцевую лодочку, помещенную в кварцевую трубу, находящуюся внутри нагретой однозонной печи СДОМ-3/100. Через трубу пропускается поток газа носителя - водород (H2), а фосфорный ангидрид (P2O5) помещают в зону источника и нагревают до температуры 300°C, при которой происходит испарение источника. Процесс проводят при следующем расходе газов: О2=40 л/ч, азот N2=500 л/ч. Технический результат: обеспечение возможности осуществления процесса диффузии фосфора с применением твердого источника диффузанта - фосфорный ангидрид (P2O5) при температуре 1050°C и времени - 40 минут, и получить RS=140±10 Ом/см, при котором обеспечивается уменьшение разброса значений поверхностной концентрации по всей поверхности кремниевой пластины и снижение длительности и температуры процесса.

Изобретение относится к технологии микроэлектроники. В способе получения слоя диоксида кремния, включающем загрузку полупроводниковой подложки в реактор, нагрев полупроводниковой подложки до необходимой температуры в диапазоне 300-500°C, подачу паров алкоксисилана, преимущественно - тетраэтоксисилана, и окислителя в виде смеси кислорода и озона, с концентрацией последнего в первом в диапазоне 0-16 вес.%, поддержание рабочего давления в реакторе в диапазоне 0,5-760 мм рт.ст., процесс осаждения осуществляют циклами, состоящими из последовательных импульсов паров алкоксисилана и окислителя, разделенными импульсами продувочного инертного газа, причем длительность импульсов составляет 0,1-20 секунд, а количество циклов рассчитывают из необходимой толщины слоя и скорости осаждения слоя диоксида кремния за один цикл. Изобретение позволяет обеспечить равномерный рост слоев диоксида кремния в условиях реализации процесса, исключающего взаимодействие исходных реагентов или их непрореагировавших остатков в реакторе, и обеспечивает взаимодействие реагентов на нагретой поверхности подложки в адсорбционном слое. 7 ил., 1 табл.

Изобретение относится к области низкотемпературных технологий микро- и наноэлектроники и может быть использовано для создания радиационно-стойких интегральных схем и силовых полупроводниковых приборов. Оксид кремния получают путем нагрева кремния в атмосфере кислорода до температуры 250-400°C потоком электронов плотностью в интервале 2,5·1013-1014 см-2·с-1 с энергией 3,5-11 МэВ. Технический результат изобретения состоит в получении высококачественных низкотемпературных оксидов кремния с характерными для высокотемпературных термических оксидов параметрами: плотностью поверхностных состояний (Nss менее 1011 см-2), максимальной величиной критического поля (Екр более 2·105 В/см), минимальным разбросом пороговых напряжений (∆Vt менее 0,1 В) и повышенной радиационной стойкостью (более 106 рад). 1 ил.
Наверх