Способ определения трехосной ориентации космического аппарата

Изобретение относится к управлению ориентацией космического аппарата (КА), оснащенного магнитометром для определения вектора напряженности магнитного поля Земли (МПЗ). Способ включает измерение напряженности МПЗ и параметров орбиты КА. При этом стабилизируют КА в инерциальном пространстве, фиксируют направление вектора напряженности МПЗ на момент стабилизации, измеряют угол между фиксированным и текущим направлениями вектора напряженности МПЗ. Фиксируют и запоминают момент достижения острым измеряемым углом максимального значения и измеряют модуль напряженности МПЗ на фиксированный момент. Рассчитывают по положению КА на орбите модуль напряженности магнитного поля Земли на тот же момент. Сравнивают данные значения модуля напряженности МПЗ и определяют значение магнитной помехи от КА. Определяют ориентацию КА по фиксированным значениям вектора напряженности МПЗ в момент стабилизации КА и на момент достижения острым измеряемым углом максимального значения с учетом определенного значения магнитной помехи по формуле Техническим результатом изобретения является возможность определения трехосной ориентации КА на любых участках полета, вне зависимости от освещенности КА Солнцем, а также повышение точности определения ориентации.

 

Изобретение относится к космической технике и может быть использовано в системах определения ориентации КА, оснащенных магнетометром для определения направления и модуля вектора напряженности МПЗ. Одновременно с определением ориентации КА предложенный метод позволяет определить величину магнитной помехи, создаваемую магнитомягкими и магнитотвердыми материалами, находящимися на борту космического аппарата.

Известны различные способы определения ориентации КА. Для определения ориентации могут использоваться измерения инфракрасных датчиков, солнечных датчиков, звездных датчиков, магнитометров [1].

Все существующие способы определения ориентации КА имеют определенные ограничения и недостатки. Системы определения ориентации, основанные на инфракрасном датчике, имеют большую массу и невысокую точность. Системы, основанные на солнечном датчике, не позволяют определять ориентацию КА в моменты времени, когда он находится на неосвещенной стороне Земли. Звездные датчики имеют большую точность, но могут пострадать от засветки Солнцем, являющимся более мощным источником излучения в оптическом диапазоне, чем любая из звезд.

Наиболее часто для определения трехосной ориентации используются способы, основанные на измерении вектора напряженности МПЗ и вектора направления на Солнце [2]. Данный способ, выбранный авторами за прототип, включает измерение напряженности МПЗ, измерение параметров орбиты и измерение направления на Солнце. Этот способ позволяет надежно определять трехосную ориентацию КА на участках полета по освещенной Солнцем орбите.

Однако при полете КА в тени Земли, где отсутствуют измерения солнечного датчика, данный способ, очевидно, не может быть применен, т.е. способ-прототип не является универсальным. Это является основным недостатком способа-прототипа. Кроме того, точность определения трехосной ориентации КА способом-прототипом оказывается низкой при малых значениях угла между измеряемыми направлениями и при наличии погрешностей в измерениях.

Задачами, решаемыми предлагаемым способом, являются обеспечение возможности определения трехосной ориентации на любых участках полета, вне зависимости от освещенности Солнцем КА, и повышение точности определения ориентации.

Технический результат достигается тем, что в способе определения трехосной ориентации КА, основанном на измерении напряженности МПЗ и измерении параметров орбиты, в отличие от известного стабилизируют КА в инерциальном пространстве, фиксируют направление вектора напряженности МПЗ на момент стабилизации аппарата, измеряют угол между фиксированным и текущим направлениями вектора напряженности МПЗ, фиксируют и запоминают момент достижения острым измеряемым углом максимального значения, измеряют модуль напряженности МПЗ на фиксированный момент, рассчитывают по положению КА на орбите модуль напряженности магнитного поля Земли на тот же момент, сравнивают измеренное и рассчитанное значения модуля напряженности МПЗ и определяют значение магнитной помехи от КА, определяют ориентацию КА по фиксированным значениям вектора напряженности МПЗ в момент стабилизации КА и на момент достижения острым измеряемым углом максимального значения с учетом определенного значения магнитной помехи по формуле

Магнитная помеха на КА определяется следующим образом.

Пусть - вектор напряженности МПЗ, рассчитанный теоретически;

- измеренный вектор напряженности МПЗ;

- вектор напряженности МПЗ;

- вектор магнитной помехи:

где , , - компоненты вектора магнитной помехи в связанной системе координат.

Используем очевидное соотношение:

Для удобства математических расчетов возведем его в квадрат:

Считая, что проводимые измерения независимые, равноточные и что ошибка измерений распределена по нормальному закону с известной дисперсией и нулевым математическим ожиданием, из соотношения (4) с учетом введенных обозначений (2) получим:

где n - количество проведенных измерений, а i - номер измерения.

В соответствии с методом наименьших квадратов составим выражение для невязки i-го измерения:

Введем для удобства дополнительное обозначение:

Характерной величиной наилучшего подбора величин является сумма квадратов невязок всех проведенных измерений:

Раскроем внутренние скобки в выражении (8) получим:

Так как величины , , являются малыми, то можно пренебречь членами второго порядка малости в выражении (9), т.е. членами , , . Тогда получим следующее выражение для G:

Раскроем скобки в выражении (10):

В рамках метода наименьших квадратов компоненты вектора магнитных помех , , определяются из условия минимума суммы квадратов невязок (11). Минимум величины G находится из условия равенства нулю первых производных величины G по переменным , , :

Преобразуем систему уравнений (12) к следующему виду:

. Очевидно, что для n≥2 матрица всегда обратима.

Для расчета величины напряженности МПЗ, входящего в соотношение (3), обычно используется его аналитическое представление, основанное на разработанной Гауссом теории разложения магнитного потенциала Земли в ряд по сферическим функциям [3]:

где a - средний радиус Земли (6371.2 км), r, ϕ, θ - сферические координаты точки наблюдения, - квазинормированный по Шмидту присоединенный полином Лежандра первого рода n-й степени и m-го порядка, - коэффициенты, заданные используемой моделью МПЗ, N - количество гармоник разложения скалярного потенциала МПЗ.

Напряженность МПЗ определяется формулой:

Проекции вектора определяются по формулам:

где X', Y', Z' - проекции вектора напряженности МПЗ на оси географической системы координат.

Квазинормированные по Шмидту функции обозначены волнистой линией. Они связаны с ненормированными функциями следующими соотношениями:

Явный вид функций Лежандра известен, и они могут быть легко вычислены по прямым формулам:

Коэффициент нормировки сферических функций вычисляется по формуле:

где - наибольшее целое положительное число, содержащееся в .

Вековой ход МПЗ может быть учтен пересчетом коэффициентов по формулам:

где t - момент времени, для которого ищутся коэффициенты; (t-2005) - время, исчисляемое в годах, начиная с начала 2005 г. до момента t. Международная аналитическая модель МПЗ позволяет определять компоненты вектора напряженности с точностью порядка 20-50γ.

Определение трехосной ориентации КА по фиксированным значениям вектора напряженности МПЗ в момент стабилизации КА и на момент достижения острым углом максимального значения с учетом определенного значения магнитной помехи осуществляется следующим образом:

где A - матрица перехода от абсолютной к связанной системе координат.

Введем в рассмотрение орты:

Матрицы перехода M1 и M2 от вспомогательной системы координат Opqr соответственно к осям связанной и абсолютной систем имеют вид

Используя матрицы M1 и М2, найдем матрицу перехода от абсолютной системы координат к связанной. Получим

Матрица перехода между орбитальной и связанной системами координат получается аналогичным образом.

Углы ϑ, φ, ψ находятся с помощью матриц A1 и A по формулам

Здесь aij - элементы матрицы A.

Ориентация осей КА относительно орбитальной системы координат задается с помощью матрицы перехода А2 (от системы координат Ox0y0z0 к системе Oξηζ):

где Ψ, Θ, Ф - углы рыскания, тангажа и крена, причем

-π/2≤Θ≤π/2; 0≤Ψ≤2π; 0≤Ф≤2π

Вычислив матрицу по компонентам векторов и , рассчитанным в орбитальной системе координат, с учетом (29), углы тангажа, рыскания и крена находят по формулам:

В настоящее время технически все готово для реализации предложенного способа. Для измерения напряженности МПЗ может использоваться магнитометр СМ-8М, установленный на МКС. Для измерения орбиты КА могут использоваться штатные средства радиоконтроля орбиты или приемники спутниковой навигации GPS и ГЛОНАСС, так же установленные на МКС. Для стабилизации КА в инерциальном пространстве могут использоваться гиродины или двигатели ориентации и штатные ДУС.

Имеющиеся в настоящее время измерительные и вычислительные средства позволяют измерять угол между фиксированным и текущим направлениями вектора напряженности МПЗ, фиксировать и запоминать момент достижения острым измеряемым углом максимального значения, измерять модуль напряженности МПЗ в фиксированный момент, рассчитывать модуль напряженности МПЗ на тот же момент.

Предлагаемый способ позволяет определять трехосную ориентацию КА на всех участках орбиты, т.е. является универсальным для всех участков полета. Кроме того, за счет определения трехосной ориентации в определенный момент времени и учета магнитной помехи в измерениях магнитометра он позволяет повысить точность определения ориентации КА.

Список литературы

1. Алексеев К.Б., Бебенин Г.Г. Управление космическими летательными аппаратами. М.: Машиностроение, 1974.

2. Барышев В.А., Крылов Г.Н. Контроль ориентации, метеорологических спутников. Л.: Гидрометеоиздат, 1968.

3. ГОСТ 25645.126-85. ПОЛЕ ГЕОМАГНИТНОЕ. Модель поля внутриземных источников. Москва, Государственный комитет СССР по управлению качеством продукции и стандартам.

Способ определения трехосной ориентации космического аппарата, включающий измерение напряженности магнитного поля Земли и измерение параметров орбиты космического аппарата, отличающийся тем, что стабилизируют космический аппарат в инерциальном пространстве, фиксируют направление вектора напряженности магнитного поля Земли на момент стабилизации аппарата, измеряют угол между фиксированным и текущим направлением вектора напряженности магнитного поля Земли, фиксируют и запоминают момент достижения острым измеряемым углом максимального значения, измеряют модуль напряженности магнитного поля Земли на фиксированный момент, рассчитывают по положению космического аппарата на орбите модуль напряженности магнитного поля Земли на тот же момент, сравнивают измеренное и рассчитанное значение модуля напряженности магнитного поля Земли, по результатам сравнения определяют значение магнитной помехи от космического аппарата, и определяют ориентацию космического аппарата по фиксированным значениям вектора напряженности магнитного поля Земли на момент стабилизации космического аппарата и на момент достижения указанным острым измеряемым углом максимального значения с учетом определенного значения магнитной помехи по формуле



 

Похожие патенты:

Изобретение относится к управлению полетом космических аппаратов с использованием данных о магнитном поле Земли (МПЗ). .

Изобретение относится к космической технике и может применяться для стабилизации искусственных спутников Земли (ИСЗ) с использованием геомагнитного поля. .

Изобретение относится к области управления ориентацией и движением центра масс космических аппаратов (КА). .

Изобретение относится к космической технике и может быть использовано для управления ориентацией космических аппаратов (КА). .

Изобретение относится к космической технике и может использоваться в полупассивных системах управления искусственными спутниками Земли (ИСЗ). .

Изобретение относится к области управления ориентацией и орбитой центра масс космических аппаратов (КА). .

Изобретение относится к области управления ориентацией и орбитой центра масс космических аппаратов (КА). .

Изобретение относится к системам управления искусственными спутниками Земли с использованием магнитного поля Земли. .

Изобретение относится к системам управления искусственными спутниками Земли с использованием магнитного поля Земли. .

Изобретение относится к космической технике и может быть использовано для управления ориентацией искусственных спутников Земли (ИСЗ). .

Изобретение относится к области электротехники, в частности к устройствам получения электрической энергии, и может быть использовано для получения электрической энергии на подвижных объектах, перемещающихся в пространстве относительно силовых линий магнитного поля

Изобретение относится к электротехнике, к электрическим двигателям, и может быть использовано для создания моментов сил, способных поворачивать подвижные объекты, перемещающиеся в пространстве относительно силовых линий магнитного поля

Изобретение относится к ракетно-космической технике

Изобретение относится к области электротехники, в частности к устройствам, предназначенным для получения электрической энергии, и может быть использовано для получения электрической энергии на летательных аппаратах, перемещающихся в пространстве относительно силовых линий магнитного поля Земли. Технической результат, достигаемый при использовании данного изобретения, состоит в уменьшении влияния работы электрического генератора для искусственного спутника Земли на ориентацию летательного аппарата при одновременном обеспечении повышения эффективности работы самого электрического генератора. Указанный технической результат достигается тем, что в предлагаемом электрическом генераторе для искусственного спутника Земли, якорь которого выполнен в виде катушки, половина которой, включающая в себя половину каждого витка катушки, закрыта магнитонепроницаемым экраном, согласно изобретению якорь генератора выполнен из двух одинаковых катушек, расположенных по обе стороны искусственного спутника Земли симметрично относительно его центра масс, при этом обмотки катушек генератора соединены параллельно или последовательно и согласно. 1 з.п. ф-лы, 2 ил.

Изобретение относится к космической технике и может быть использовано для определения временной привязки телеметрических измерений с космического аппарата (КА). Способ определения временной привязки телеметрических измерений с КА включает генерацию на борту временных меток и передачу их с измеряемыми параметрами бортовых систем в сформированном телеметрическом кадре на наземный приемный пункт. При этом измеряют на борту космического аппарата напряженность магнитного поля Земли, измеряют параметры орбиты космического аппарата, по которым определяют напряженность магнитного поля Земли, определяют ошибку временной привязки телеметрических измерений Δt из соотношений где Ha - модуль напряженности магнитного поля Земли, полученный по измеренным параметрам орбиты космического аппарата, Н - модуль напряженности магнитного поля Земли, полученный по измерениям на борту космического аппарата, и определяют временную привязку телеметрических измерений по формуле t*=t+Δt, где t - временная привязка телеметрических измерений, полученная по бортовым временным меткам. Обеспечивается точная временная привязка телеметрических измерений с КА.

Группа изобретений относится к способам и средствам магнитной ориентации спутников, преимущественно малых космических аппаратов (КА). Способ включает измерение векторов индукции магнитного поля Земли и кинетического момента, накопленного системой «корпус КА-маховик». По измеренным параметрам формируют сигналы на исполнительные электромагнитные устройства для предварительного успокоения КА. С помощью двигателя-маховика (установленного по оси тангажа) проводят гиростабилизацию и управление движением КА по тангажу. Разгрузку маховика проводят с помощью указанных электромагнитных устройств. Управление этими процессами осуществляет микроЭВМ, взаимодействующая с бортовой ЭВМ, связанной по каналу телеметрии с наземным центром. Техническим результатом группы изобретений является повышение технико-эксплуатационных характеристик и надежности системы ориентации, главным образом малых КА. 2 н.п. ф-лы, 1 ил.

Группа изобретений относится к управлению относительным движением космического аппарата (КА) путем его взаимодействия с геомагнитным полем. В способе определяют компоненты кинетического момента, накопленного инерционными исполнительными органами (ИО) КА, и геомагнитной индукции - по осям X, Y, Z. По этим данным формируют сигналы разгрузочных магнитных моментов по каждой оси X, Y, Z. Устройство включает в себя датчики указанных компонент кинетического момента и геомагнитной индукции, подключенные к входам блока управления, и магнитные ИО для формирования разгрузочных магнитных моментов. Введены также три цифро-аналоговых преобразователя, три компаратора, три элемента «И», три электронных ключа - обеспечивающих формирование магнитными ИО оптимальных по X, Y, Z - компонентам геомагнитной индукции разгрузочных моментов. Техническим результатом является снижение расхода электроэнергии (и выделения тепла) магнитными ИО. 2 н.п. ф-лы, 2 ил.
Наверх