Рабочее вещество для термолюминесцентного детектора ионизирующего излучения

Изобретение относится к получению рабочего вещества, которое может быть использовано для изготовления термолюминесцентного детектора ионизирующего излучения, использующегося в индивидуальной дозиметрии для определения поглощенных доз персонала; для определения поглощенных доз пациентов при проведении рентгеновской диагностики и терапии; при определении поглощенных доз в поле облучения высокодозовых технологических установок. Технический результат - расширение диапазона регистрируемых доз ионизирующего излучения рабочего вещества по пику, обусловленному поглощением SiO2, с максимумом при 154°С, от 10-4 кГр до 1 кГр и по пику, обусловленному поглощением УДА, с максимумом при 270°С, от 1 кГр до 100 кГр. Рабочее вещество для термолюминесцентных детекторов ионизирующего излучения включает нанодисперсный порошок алмаза с размером частиц около 5 нм, порошок материала на основе SiO2, размельченный до крупности <0,08 мм, и силикатный клей в качестве связующего двух материалов. Синтез композитного рабочего вещества проводят путем смешивания SiO2 и УДА в пропорциях, мас.%: ультрадисперсный порошок алмаза с размером частиц около 5 нм - 25-65, SiO2 - 25-65, силикатный клей - остальное. 1 ил., 2 табл.

 

Изобретение относится к получению рабочего вещества, которое может быть использовано для изготовления термолюминесцентного детектора ионизирующего излучения, использующегося в индивидуальной дозиметрии для определения поглощенных доз персонала; для определения поглощенных доз пациентов при проведении рентгеновской диагностики и терапии; при определении поглощенных доз в поле облучения высокодозовых технологических установок.

Известно такое рабочее вещество, используемое для изготовления алмазных детекторов, как природные алмаз (патент РФ №2167435, МПК G01T 1/24, опубл. 20.05.2001), но, как известно, природные алмазы являются дорогостоящим материалом, к тому же изготовление детекторов проходит через множество стадий, что представляет собой трудоемкую и долговременную работу.

Известен состав (патент SE №424374, МПК G01T 1/115, G01T 1/02, опубл. 12.07.1982), в котором в качестве рабочего вещества для радиационных дозиметров используется смесь LiF, CaF2, CaSO4, Li2SO4. Использование данного многокомпонентного материала предложено в определенных условиях, после чего при помощи температуры происходит преобразование неизвестной поглощенной дозы в количество энергии, а затем ее регистрация. К недостаткам данного метода следует отнести сложность изготовления четырехкомпонентного рабочего вещества, а также проведение нескольких эквивалентных операций для построения калибровки, что затруднено постоянными изменениями свойств окружающей среды.

Известно использование в качестве рабочего вещества для изготовления детекторов материала двуокиси кремния SiO2 (патент РФ №2108598, МПК G01T 1/11, С09К 11/08, опубл. 10.04.1998). К недостаткам данного изобретения относится то, что рабочее вещество только является костноэквивалентным, а это не позволяет давать правильные оценки регистрированной поглощенной дозы в индивидуальной дозиметрии.

Наиболее близким к предлагаемому техническому решению является способ, изложенный в патенте РФ №2200965 (МПК G01T 1/11, опубл. 20.03.2003), в котором предложено использование в качестве рабочего вещества для термолюминесцентного детектора (ТЛД) синтетического ультрадисперсного алмаза (УДА). Для реализации способа использованы алмазы, полученные химическими методами выделения и очистки УДА из алмазно-углеродной шихты с дисперсностью 5 нм.

К недостаткам данного рабочего вещества следует отнести чрезвычайно низкую интенсивность термолюминесцентного сигнала в области доз менее 1 кГр. Следовательно, детектор на основе данного вещества не может быть использован в области доз, характерных для индивидуальной дозиметрии персонала и даже пациентов.

Задачей изобретения является расширение диапазона регистрируемых доз ионизирующего излучения рабочего вещества для расширения дозиметрии как в сторону малых доз (менее 1 кГр), так и в сторону высоких доз (до 100 кГр).

Поставленная задача решается тем, что предлагается в качестве рабочего вещества для термолюминесцентных детекторов ионизирующего излучения использовать смесь ультрадисперсного алмаза, с размером частиц около 5 нм, двуокиси кремния SiO2 и силикатного клея в качестве связующей среды.

Синтез композитного рабочего вещества проводят путем смешивания SiO2 и УДА в пропорциях, мас.%: ультрадисперсный порошок алмаза, с размером частиц около 5 нм - 25-65, SiO2 - 25-65, силикатный клей - остальное, этот состав обеспечивает измерение поглощенных доз в широком диапазоне: по пику, обусловленному поглощением SiO2, с максимумом при 154°С, от 10-4 кГр до 1 кГр и по пику, обусловленному поглощением УДА, с максимумом при 270°С, от 1 кГр до 100 кГр. Вышеописанные диапазоны обусловлены возможностью получения достоверных результатов при использовании данного рабочего вещества (табл.1). Выбор температуры обусловлен регистрацией максимума на кривой термостимулированной люминесценции (ТСЛ) (см. чертеж). Полученное рабочее вещество далее помешают в формы при небольшом надавливании и выдерживают в течение часа при нормальных условиях. Затем вынимают полученные ТЛД и просушивают.

Пример

Смешивают SiO2 и УДА в пропорциях, мас.%: ультрадисперсный порошок алмаза, с размером частиц около 5 нм - 45, SiO2 - 45, силикатный клей - остальное, затем помешают в формы при небольшом надавливании и выдерживают в течение часа при нормальных условиях, вынимают готовые ТЛД и просушивают. Полученные ТЛД обеспечивают измерение поглощенных доз в широком диапазоне: по пику, обусловленному поглощением SiO2, с максимумом при 154°С, от 10-4 кГр до 1 кГр и по пику, обусловленному поглощением УДА, с максимумом при 270°С, от 1 кГр до 100 кГр. Полученное рабочее вещество ткане- и костноэквивалентно.

Примеры использования других массовых соотношений компонентов рабочего вещества приведены в табл.2.

Предлагаемое новое композитное рабочее вещество является не только костноэквивалентным, т.е. его эффективный атомный номер (Z) сравним с эффективным атомным номером костной ткани, что необходимо при регистрации доз в костноэквивалентных материалах, например почвы, керамика, кварц и т.д., но и обладает эквивалентностью мышечной ткани, что необходимо при регистрации поглощенных доз в индивидуальной дозиметрии (близкой по Z к характеристикам воды). Достоинствами вещества являются: расширенные пределы регистрации доз, для которых используются два рабочих пика ТСЛ, эквивалентность материала мышечной ткани человека, что обеспечивает адекватную дозиметрию на ткани человека, например, при использовании в дозиметрии медицинского облучения. Данное рабочее вещество является практически единственным, позволяющим получать возможность дозиметрии в области высоких интенсивностей и плотностей возбуждения, в том числе и импульсного.

Таблица 1
Обоснование пределов определения поглощенных доз
Поглощенная доза Результат исследования
Пик температуры по двуокиси кремния SiO2 - 154°С
менее 0.1 мГр Чувствительность детектора ниже предела регистрации с использованием ТЛ комплексов
от 0.1 до 1 кГр Регистрация поглощенных доз, получение достоверных результатов
более 1 кГр Нет линейной зависимости на кривой ТСЛ, в связи с чем уменьшается достоверность результатов
Пик температуры по УДА - 270°С
менее 1 кГр Чувствительность детектора ниже предела регистрации с использованием ТЛ комплексов
от 1 до 100 кГр Регистрация поглощенных доз, получение достоверных результатов
более 100 кГр Нет линейной зависимости на кривой ТСЛ, в связи с чем уменьшается достоверность результатов
Таблица 2
Примеры параметров
№ примера Соотношение компонентов (силикатный клей 10%), мас.% Диапазон определения доз, кГр Влияние на (по сравнению с Примером 1):
УДА SiO2 пик 154°С пик 270°С костноэквивалентность тканеэквивалентность
10-4-2 60-90 Значительно снижается
2 25 65
10-4-1,7 30-80 снижается
3 35 55
10-2-0,8 0,8-100 снижается
5 55 35
0,1-0,7 0,7-100 Значительно снижается
6 65 25

Рабочее вещество для термолюминесцентных детекторов ионизирующего излучения, включающее ультрадисперсный алмаз и связующее, отличающееся тем, что оно дополнительно содержит двуокись кремния при следующем соотношении компонентов, мас.%:
ультрадисперсный алмаз 25-65
двуокись кремния 25-65
силикатный клей в качестве связующего остальное



 

Похожие патенты:

Изобретение относится к способам измерения дозы, накопленной в твердотельных термолюминесцентных детекторах ионизирующих излучений на основе кристаллов и нанокерамики оксида алюминия, и может быть использовано для повышения надежности, точности и достоверности метода, проводимых с его помощью измерений.

Изобретение относится к радиационной физике, а именно к устройствам для оценки накопленной дозы ионизирующего -излучения с использованием твердотельных термолюминесцентных детекторов, и может быть применено в индивидуальной и клинической дозиметрии, при мониторинге радиационной обстановки на ядерных реакторах, ускорителях, в лабораториях и на производствах с источниками заряженных частиц, при археологическом и геологическом датировании, в аварийной и ретроспективной дозиметрии.

Изобретение относится к радиационной физике, а именно к способам оценки накопленной дозы ионизирующего -излучения с использованием твердотельных термолюминесцентных детекторов, и может быть использовано в индивидуальной и клинической дозиметрии, при мониторинге радиационной обстановки на ядерных реакторах, ускорителях, в лабораториях и на производствах с источниками заряженных частиц, при археологическом и геологическом датировании, в аварийной и ретроспективной дозиметрии.

Изобретение относится к неразрушающим методам определения физико-технических характеристик материалов, подвергающихся в процессе работы воздействию ультразвуковых вибраций, сильных электрических полей, облучению различными видами электромагнитных излучений.

Изобретение относится к способу измерения накопленной дозы или мощности дозы ионизирующего излучения твердотельными детекторами, облученными при высокой температуре окружающей среды.

Изобретение относится к области термолюминесцентной дозиметрии (ТЛД) фотонного излучения рентгеновского и гамма-диапазонов, а также электронного излучения, а именно к способам приготовления рабочих веществ термолюминесцентных детекторов.

Изобретение относится к способу обработки твердотельных детекторов ионизирующих излучений, основанных на явлении термостимулированной люминесценции (ТЛ). .

Изобретение относится к области дозиметрии гамма- и электронного излучения и может быть пригодно для систем радиационного контроля биологической защиты ядерно-энергетических установок, для мониторинга радиационной обстановки в зоне захоронения радиоактивных отходов, для оценки и прогнозирования радиационной обстановки в помещениях.

Изобретение относится к способу измерения дозиметрического сигнала в термолюминесцентной дозиметрии (ТЛД) ионизирующих излучений, использующей в качестве чувствительного вещества детекторы на основе оксида алюминия, и может быть использовано для повышения надежности, точности и достоверности метода ТЛД и проводимых с его помощью измерений.

Изобретение относится к области ядерного приборостроения, оно связано с разработкой дозиметрических комплексов интегрирующего типа, а именно с разработкой термолюминесцентных дозиметрических комплексов для регистрации рентгеновского, гамма- и электронного излучения, комплексов, используемых в стационарных условиях, в том числе и для индивидуальной дозиметрии, а также в качестве контролирующих дозиметрических комплексов сопровождения транспортных ядерно-энергетических установок наземного, подводного и космического базирования.

Изобретение относится к медицине, стоматологии, онкологии и радиологии, и может быть использовано для улучшения качества стоматологической помощи пациентам со злокачественными новообразованиями области головы и шеи после проведения лучевой терапии

Изобретение относится к радиационной физике, является способом оценки накопленной дозы ионизирующего -излучения с использованием твердотельных термолюминесцентных детекторов и может быть использовано при персональной дозиметрии при мониторинге радиационной обстановки в различных условиях

Изобретение относится к радиационной физике, является устройством для определения поглощенной дозы ионизирующего -излучения в термолюминесцентном детекторе и может быть использовано при персональной дозиметрии, при мониторинге радиационной обстановки в различных условиях

Изобретение относится к области измерения ионизирующих излучений при текущем и аварийном индивидуальном дозиметрическом контроле

Изобретение может быть использовано в дозиметрии слабого ионизирующего излучения, для контроля работы атомных энергетических установок, ускорителей заряженных частиц, рентгеновской аппаратуры. Сначала готовят смесь, содержащую соединения компонентов термолюминесцентного материала на основе бората магния, допированного диспрозием, перетиранием в этиловом спирте. Затем полученную смесь вводят в водный раствор полигексаметиленгуанидин хлорида с молекулярной массой 8,5 кДа и концентрацией 7,09 масс.%, нагревают, сушат, и отжигают при температуре 700-800°C в течение 10-20 часов. Снижается температура синтеза, достигается устойчивая интенсивность термолюминесценции. 1 табл., 1 ил., 2 пр.
Изобретение относится к технологии изготовления термолюминесцентных дозиметров и может быть использовано в исследованиях воздействия радиации на вещества и биологические объекты, а также в аппаратуре дозиметрического контроля. Способ изготовления чувствительного элемента термолюминесцентного дозиметра включает изготовление кристаллического синтетического алмаза при температуре 1480°C и давлении 50 ГПа. Полученный кристаллический синтетический алмаз дополнительно отжигают при температуре 1400-2000°C и давлении 4,5-7,0 ГПа и охлаждают до комнатной температуры. Далее кристаллический синтетический алмаз подвергают термообработке повышением температуры до 470-530°C в течение 1,5-2,5 часов и плавно охлаждают до комнатной температуры. Алмаз содержит примеси бора и азота в концентрации менее 0,1 ppm и не более 1 ppm соответственно. Технический результат - расширение диапазона регистрируемых чувствительным элементом термолюминесцентного детектора доз облучения, особенно в области доз, близких к природным фоновым излучениям, обеспечение простоты, безопасности подготовки детектора к работе и увеличение времени хранения накопленной дозы облучения. 1 табл., 1 пр.

Изобретение относится к радиационной физике, а именно к способам измерения поглощенной дозы ионизирующего γ-излучения, или β-излучения, или импульсного потока электронов в термолюминесцентном детекторе на основе анионодефектного монокристалла оксида алюминия. Способ измерения поглощенной дозы ионизирующего излучения в термолюминесцентном детекторе на основе анионодефектного монокристалла оксида алюминия, содержащем мелкие и глубокие ловушки носителей заряда, включает подготовку детектора к измерению путем нагревания его до определенной температуры, облучение детектора измеряемым излучением и измерение дозиметрического термолюминесцентного сигнала в полосе свечения 240-280 нм при нагреве детектора до требуемой температуры, при этом подготовку детектора к измерению проводят после его облучения измеряемым излучением, а нагрев детектора для измерения дозиметрического термолюминесцентного сигнала осуществляют до температуры, находящейся в диапазоне 910-930 К. Технический результат - расширение диапазона регистрируемых доз. 2 н.п. ф-лы, 4 ил.

Изобретение относится к химической промышленности и дозиметрии излучений. Для получения прозрачного тканеэквивалентного детектора излучений на основе Li2B4O7 осуществляют следующие этапы: a) смешивают компоненты исходного реагента детектора, включающие деионизированную воду, борную кислоту H3BO3, примесь Mn и связующий материал двуокись кремния SiO2; b) повышают температуру смеси до 75-85°C, добавляют карбонат лития Li2CO3 и побочную примесь Be2+, которая не уменьшает прозрачность детектора в диапазоне длин волн 320-750 нм; c) осуществляют старение, сушку и предварительный обжиг полученного исходного реагента; d) измельчают, шлифуют и просеивают исходный реагент; e) формуют под давлением; f) спекают сформованные корпуса детектора. Полученный детектор имеет подавленный низкотемпературный максимум и прозрачен как для стимулирующего света, так и для выходной люминесценции. 2 н.п. ф-лы, 2 ил.

Изобретение относится к измерению высоких доз поглощенного излучения. Сущность изобретения заключается в том, что способ термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия включает термообработку, при этом после считывания высокодозной (более 2 Гр) дозиметрической информации термолюминесцентный детектор подвергают термообработке при температуре 900÷1000°C в течение 1-3 часов. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области дозиметрии ионизирующих излучений, а именно к области оптически стимулированной люминесцентной (ОСЛ) дозиметрии, связанной с разработкой и применением рабочих веществ для ОСЛ-детекторов, пригодных для регистрации рентгеновского, гамма- и электронного излучения, а также для регистрации тепловых нейтронов. Сущность изобретения заключается в том, что рабочее вещество ОСЛ-детектора для дозконтроля в смешанных полях ионизирующих излучений, включающее фторид натрия, хлорид или фторид меди, дополнительно содержит фторид лития 6LiF при следующем соотношении компонентов (мол.%): NaF 95,9-98,99 CuCl2/CuF2 0,01-0,1 6LiF 1-4 Технический результат - регистрация рентгеновского, гамма- и электронного излучения, а также регистрация тепловых нейтронов. 3 ил., 2 табл.
Наверх