Формовочная масса и формованное изделие из термопластичной пластмассы, содержащей наноскалярные неорганические частицы, способ получения формовочной массы и формованного изделия, а также их применение

Изобретения могут быть использованы при изготовлении пластмасс с улучшенными механическими характеристиками. Для получения формовочной массы и формованного изделия термопластичную пластмассу в расплавленном состоянии перемешивают в экструдере с червячной транспортировкой с наноскалярными неорганическими частицами и веществом, способствующим растворению. Предпочтительно наноскалярные частицы вводят в форме дисперсии. Устанавливают давление и температуру, при которых пластмасса находится в виде расплава, а способствующее растворению вещество - в сверхкритическом состоянии. Смесь у выхода экструдера пропускают через пропускной зазор менее чем 20 мкм в зону декомпрессии и выводят расплав с введенными частицами. После его охлаждения измельчают до получения формовочной массы или переносят в формующее устройство и формуют до получения формованного изделия. Наличие в термопластичной пластмассе наноскалярных частиц определяет, в частности, повышение твердости, жесткости, показателя преломления, подавление бликов на поверхности и т.д. 5 н. и 40 з.п. ф-лы.

 

В европейской заявке на патент ЕР 1357151 А1 описывают бимодальные смеси полимеров, которые до сих пор были смешаны с одним другим только в недостаточной степени, или если полностью, то только очень сложным методом и с недостатками, связанными с такими, как, например, полиэтилены с различными молекулярными массами. Полное смешивание различных полимерных фракций достигается, в частности, введением смесей в контакт с текучей средой в сверхкритическом состоянии, например CO2, при высоких давлениях и температурах и затем смеси возвращают в исходное состояние. Отмечают, что процесс также пригоден для введения присадок или наполнителей, таких как, например, сажа, в полимеры.

В патенте США 6753360 В2 описывают способ получения усиленных полимеров с улучшенными механическими характеристиками. При этом слоистые силикаты перемешивают с полимерами, например полипропиленами, и соединяют с текучей средой в сверхкритическом состоянии, например СО2, при высоких давлениях и температурах. При этом происходит разъединение слоев слоистых силикатов на частицы чешуйчатых силикатов в смеси. Путем последующего быстрого возвращения смеси в исходное состояние при резком падении давления достигают очень равномерного диспергирования отдельной силикатной частицы в полимерах, вследствие чего получают соответственно усиленный полимер.

Наряду с развитием самых маленьких инструментов, «микролабораторий» и переключательных схем или моторов, вперед выступает нанохимия со своими достижениями. Примерами являются грязеотталкивающие и водоотталкивающие покрытия, стойкие к царапанью лаки, новые наполнители для автомобильных шин или цветные слоев, которые защищают от воздействий аэрозоля.

Введение наноскалярных неорганических частиц в полимерные пластмассы предполагает ряд преимуществ, которые кратко названы далее:

- повышение твердости поверхностного слоя и стойкости к царапанию и сопротивления истиранию,

- повышение жесткости при высокой вязкости,

- повышение показателя преломления,

- независимость индекса преломления от температуры,

- сокращение (термического) растяжения,

- получение защитных характеристик,

- подавление бликов на поверхностях,

- улучшение поведения при горении.

В частности, предполагают, что новые или улучшенные свойства могут быть получены при сохранении известных хороших свойств пластмасс, таких как, например, трансмиссия, прозрачность, бесцветность, а также реологические и механические характеристики.

При введении наноскалярных неорганических частиц с помощью способов, известных специалисту в данной области, таких как, компаундирование на одночервячных или двухчервячных экструдерах, а также смесителях для расплавов, в принципе возникает проблема, что первичные частицы могут объединяться в агрегаты в ходе смешивания с высоковязкими расплавами при снижении поверхностной энергии. Такие агрегаты часто почти не обладают положительными свойствами, которые ожидались от первичных частиц, или вообще не имеют вышеуказанных свойств. При введении наноскалярных, неорганических частиц в термопластичные пластмассы с помощью известных способов уровня техники, образование агрегатов происходит в объеме, который до настоящего времени значительно препятствовал достижению заданных целей.

В патенте США 6753360 В2 описывают способ получения усиленных полимеров с улучшенными механическими характеристиками. В качестве задачи предусматривают разработать способ, улучшенный по сравнению с патентом США 6753360 В2, с помощью которого получают пластмассы или формовочную массу, которые содержат наноскалярные неорганические частицы в гомогенной дисперсии, по возможности, с высокой долей первичных частиц.

В патенте США 6753360 В2 описывают введение слоистых силикатов в форме их чешуйчатых первичных частиц. Благодаря анизатропной ориентации в пластмассе, которая связана с его геометрией и может быть едва ли контролироваться, чешуйчатые наночастицы приводят к высокой степени анизотропии в конечных свойствах модифицированных пластмасс.Поэтому необходимо разработать способ, который подходит, в частности, также для нечешуйчатых наночастиц.

Следующая проблема состоит в возможном появлении мелкой пыли в результате используемых наноскалярных, неорганических частиц во время их переработки. Появление мелкой пыли нужно избегать в основном из-за возможных рисков для здоровья людей. В случае чешуйчатых частиц, таких как, например, слоистые силикаты, незначительное появление пыли может происходить в течение сухого введения в смесь, как описывают в патенте США 6753360 В2. Эта проблема возникает в большей степени, однако, если используют наноскалярные неорганические частицы, имеющие максимальное соотношение геометрических размеров не более чем чем 5, после того как возможность для появления мелкой пыли при обработке еще значительно выше, чем в случае слоистых частиц, таких как вышеописанные слоистые силикаты, которые достигают своих свойств как наночастицы только благодаря стадии расслаивания. Многие из имеющихся сегодня наноскалярных частиц и с учетом технического интереса имеют такую геометрию первичных частиц, которая способствует появлению мелкой пыли. К тому же благодаря непрерывно улучшаемым способам получения поступают в распоряжение полученные наночастицы со все более высокими содержаниями первичных частиц для того, чтобы возможность выделения мелкой пыли повышалась параллельно с улучшением способа получения. Поэтому также необходимо разработать способ, в котором появление мелкой пыли можно свести к минимуму или избежать полностью.

Решением данной задачи является способ получения формовочной массы или формованного изделия из термопластичной пластмассы, содержащего наноскалярные неорганические частицы, причем термопластичную пластмассу в расплавленном состоянии перемешивают с наноскалярными, неорганическими частицами и веществом, способствующим растворению, в экструдере с червячной транспортировкой, причем устанавливают давления и температуры, при которых пластмасса представлена в виде расплавов и вещество, способствующее растворению, в сверхкритическом состоянии, характеризующийся тем, что смесь переносят к выходу экструдера через пропускной зазор менее чем 20 мкм в зону декомпрессии, и выводят расплавы с присоединенными, наноскалярными, неорганическими частицами, после охлаждения измельчают до получения формовочной массы или переносят в формующее устройство и формуют до получения формованного изделия.

При использовании другого экструдера, в частности экструдера с системой удаления летучих компонентов, летучие компоненты, такие как вещество, способствующее растворению, можно удалять из смеси. Пластмассу со значительно гомогенно введенными, наноскалярными, неорганическими частицами можно таким образом выводить из второго экструдера и после охлаждения нарезать на грануляты или измельчать в порошок. Альтернативно расплавы можно перерабатывать непосредственно в формованное изделие.

Кроме того, изобретение относится к формовочной массе или формованному изделию из термопластичной пластмассы, полученным предложенным согласно изобретению способом, отличающей(ему)ся тем, что в ней(м) содержаться наноскалярные неорганические частицы с содержанием первичных частиц более 50%, в расчете на число первичных частиц или, при необходимости, на число первичных частиц сверхструктур, которые составляют из не более чем 30 первичных частиц, и агрегаты, присутствующие там. Предложенную согласно изобретению формовочную массу можно использовать для получения формованных изделий с помощью термопластичной переработки, в частности экструзии, литьевого формования или инжекционного прессования.

Способ

Изобретение относится к способу получения формовочной массы или формованного изделия из термопластичной пластмассы, содержащего наноскалярные неорганические частицы.

Термопластичные пластмассы

Термопластичной пластмассой может быть, например, полиамид, полиметилметакрилатная пластмасса, модифицированный ударопрочный полиметилметакрилат, поликарбонатная пластмасс, а также полиэфиркарбонаты, полистирольная пластмасса, стирол-акрилат-нитрильная пластмасса, полиэтилентерефталатная пластмасса, гликольмодифицированная полиэтилентерефталатная пластмасса, поливинилхлоридная пластмасса, прозрачные полиолефиновые пластмассы, полиэтилен, полипропилен, акрилонитрил-бутадиен-стирольная (АБС) пластмасса, циклолефиновые сополимеры (ЦОС) и/или смесь (смеси) различных термопластичных пластмасс.

Наноскалярные частицы

Наноскалярные неорганические частицы являются коммерчески доступными или могут быть получены известными способами, такими как, например, методами осаждения, золь-гель методами или методами обработки пламенем (пламенная сажа).

Наноскалярные неорганические частицы могут состоять, например, из оксида индия-олова (IТО), диоксида кремния (SiO2), диоксида циркония ZrO2, корунда Аl2О3, гидроксида алюминия (Аl2(ОН)3), оксида цинка (ZnO), диоксида титана (ТiO2), BaSO4 или сажи, и иметь среднюю величину первичных частиц (в, например, диаметре при частицах, являющихся примерно круглыми) в области от 4 до 999 нм, предпочтительно от 4 до 720 нм, в частности от 2 до 100 нм. Предпочтительными являются частицы со средней величиной частиц (диаметром) в области длины волн видимого света от например 380 до 720 нм или ниже, в частности меньше чем 380 нм.

Среднюю величину первичных частиц специалист в данной области может точно установить, например с помощью микроскопа, например фазово-контрастного микроскопа, в частности электронного микроскопа (ТЕМ) или путем микротомографии, например через измерение репрезентативного числа частиц (например, 50 или>50), путем фотограмметрической обработки снимков.

В составе сажи, например, первичные частицы находятся в большинстве случаев не в отдельности, а как более или менее равномерно структурированные сверхструктуры первичных частиц, которые можно составлять из не более чем 100, в частности не более чем 50, предпочтительно не более чем 15 первичных частиц.

Максимальное соотношение геометрических размеров

Согласно изобретению используемыми, наноскалярными, неорганическими частицами являются, как правило, примерно сферической формы, описание соотношения геометрических размеров может быть использовано известным образом как измерение геометрического приближения к сферической форме.

Изобретение пригодно, в частности, для переработки наноскалярных, неорганических частиц с максимальным соотношением геометрических размеров первичных частиц не более чем 5, предпочтительно не более чем 3, предпочтительно не более чем 2, особенно предпочтительно не более чем 1,5. Под максимальным соотношением геометрических размеров первичных частиц понимают как значение максимально образующее относительное соотношение от двух до трех размеров длины, ширины и высоты. Причем соответственно образуют соотношение самого большого размера к самым маленьким из других обоих размеров. Первичные частицы с длиной 15 нм, шириной 5 нм и высотой 10 нм, имеют, например, максимальное соотношение геометрических размеров (от длины до ширины) 3. Первичные частицы с максимальным соотношением аспектов 5 могут, например, быть частицами в форме коротких палочек или также в форме дисков, подобных таблеткам. Максимальное соотношение аспектов первичных частиц составляет, например, максимум 1,5 или ниже, первичные частицы имеют более или менее сферическую или зернообразную форму. В противопоставление к этому первичные частицы слоистых силикатов, которые используют, например, в патенте США 6753360 В2, имеют максимальные соотношения геометрических размеров далеко за 5, в области от 20 или выше.

Предпочтительно вышеназванные, наноскалярные неорганические частицы с максимальным соотношением геометрических размеров первичных частиц максимум 5 в форме стабилизированной дисперсии вводят в смесь, в которой находятся частицы до, по меньшей мере, 70, в частности до 80, предпочтительно до, по меньшей мере, 90 или до, по меньшей мере, 95% в качестве первичных частиц или в качестве сверхструктур первичных частиц, которые составляют из не более чем 30, в частности не более чем 20, предпочтительно не более чем 15 первичных частиц.

В составах сажи первичные частицы находятся в большинстве случаев не в отдельности, а в виде сверхструктур первичных частиц, которые составляют, например, из не более чем 100, в частности не более чем 50, предпочтительно не более чем 15 первичных частиц. Сверхструктуры первичных частиц часто характерны для процессов получения и технологических характеристик соответствующих составов.

Понятие частицы включает первичные частицы, сверхструктуры первичных частиц и их агрегаты. Отличными от первичных частиц и сверхструктур первичных частиц являются нежелательные агрегаты первичных частиц или агрегаты сверхструктур первичных частиц. Агрегаты первичных частиц могут состоять из двух или более первичных частиц. Агрегаты сверхструктур первичных частиц состоят из больших первичных частиц, чем сверхструктуры первичных частиц, часто также из многократных сверхструктур первичных частиц. Нежелательные агрегаты могут возникать в отсутствие стабилизации первичных частиц и сверхструктур первичных частиц во время хранения частиц, дисперсии или во время переработки при неподходящих условиях способа.

Дисперсии

Предпочтительно наноскалярные неорганические частицы вводят в смесь в форме дисперсии. Это дает преимущество, что при введении предотвращается появление мелкой пыли. Дисперсии, при необходимости, также можно обозначать как суспензии или коллоидные растворы.

Как правило, дисперсии содержат один или несколько стабилизаторов, которые препятствуют образованию содержащихся первичных частиц или, при необходимости, сверхструктур первичных частиц во время хранения нежелательным образом в более большие агрегаты. Известные стабилизаторы, которые также обозначают как пигментные диспергаторы, являются, например, эмульгаторами, известными, например, поверхностно-активными полимерами или производными фосфоновой кислоты, например, производными фосфоновой кислоты, у которых одна часть молекулы является неполярной.

Предпочтительно дисперсия имеет содержание твердого вещества от 10 до 40, в частности от 12 до 25% масс. наноскалярных, неорганических частиц.

Дисперсия наноскалярных, неорганических частиц может находиться в жидкости, которая согласно изобретению не является веществом, способствующим растворению, например в воде. В соответствии с этим речь также может идти, например, о водной дисперсии. Это дает преимущество, что дисперсию можно дозировать независимо от вещества, способствующего растворению.

Предпочтительно дисперсия наноскалярных, неорганических частиц находится в веществе, способствующем растворению, жидком при комнатной температуре, например этаноле или метаноле, которое может переходить в сверхкритическое состояние при температурах, при которых пластмасса находится в виде расплава, при подаче соответственно высоких давлений. Здесь можно добавлять, например, общее, необходимое для данного способа количество вещества, способствующего растворению, в форме дисперсии. Однако также можно добавлять только небольшое количество необходимого для данного способа количества вещества, способствующего растворению, в форме дисперсии. Остальное количество в таком случае дозируют отдельно, причем речь может идти о подобном или другом веществе, способствующем растворению, при необходимости, также о веществе, способствующем растворению, газообразном при комнатной температуре, например СO2.

Предпочтительно в смесь вводят вышеназванные, наноскалярные неорганические частицы с максимальным соотношением геометрических размеров первичных частиц не более 5 в форме стабилизированной дисперсии. В дисперсии частицы находятся до, по меньшей мере, 70, в частности до 80, предпочтительно до, по меньшей мере, 90 или до, по меньшей мере, 95% в качестве первичных частиц или в качестве сверхструктур первичных частиц, причем последние, как правило, составляют из не более чем 100, в частности из не более чем 50, предпочтительно не более чем 15 первичных частиц.

Вещества, способствующие растворению

Согласно изобретению веществами, способствующими растворению, являются вещества, которые при температурах, при которых пластмасса находится в виде расплава, например при 200-350°С или при 200-300°С, при подаче соответственно высоких давлений, например 70-250 бар, могут переходить в сверхкритическое состояние. Предпочтительными являются вещества, способствующие растворению, которые при давлениях и температурах, при которых пластмасса находится в виде расплава и вещество, способствующее растворению, находится в сверхкритическом состоянии, по сравнению с термопластичной пластмассой являются инертными или не вызывают в нем никаких химических реакций.

Пригодными веществами, способствующими растворению, являются диоксид углерода, оксид азота (N2O), ксенон, криптон, метанол, этанол, изопропанол или изобутанол или смесь названных веществ, способствующих растворению. Предпочтительными являются диоксид углерода, метанол, этанол, изопропанол или изобутанол.

Условия переработки

Термопластичная пластмасса вместе с наноскалярными, неорганическими частицами и веществом, способствующим растворению, при давлениях и температурах, при которых пластмасса находится в виде расплава и вещество, способствующее растворению, находится в сверхкритическом состоянии, можно смешивать в экструдере с червячной транспортировкой, в одночервячном экструдере или многочервячном экструдере. Для этого известным способом можно добавлять пластмассу через подающую зону экструдера в виде твердого вещества, в большинстве случаев в виде гранулятов или порошка, расплавлять и транспортировать через червяк или при применении многочервячного экструдера через червяки и устанавливать необходимое давление и необходимую температуру для достижения сверхкритического состояния смеси. После превращения пластмассы в расплавленное состояние и при температуре от 200 до 350°С или от 200 до 300°С, предпочтительно от 220 до 280°С, и давлении от 70 до 250 бар, предпочтительно от 170 до 230 бар, в экструдер через место дозирования с помощью насоса можно добавлять соответствующее вещество, способствующее растворению. Предпочтительно через другое место дозирования, которое устанавливают последовательно за местом дозирования вещества, способствующего растворению, можно добавлять желаемое количество наноскалярных, неорганических частиц в виде водной дисперсии или в виде дисперсии в органическом растворителе. Предпочтительным способом также может быть введение дисперсии в пригодных веществах, способствующих растворению, находящихся в сверхкритическом состоянии при установленных параметрах способа давлении и температуре.

Давление и температура могут находиться выше критической температуры и критического давления выбранного вещества, способствующего растворению.

Причем давления и температуры можно предпочтительно выбирать таким образом, что повреждения термопластичной пластмассы вследствие термического разрушения или других форм потери свойств не встречаются или встречаются только в очень незначительной мере.

Например, метанол имеет критическую температуру 240,5°С и критическое давление около 78,9 бар. Введение наноскалярных, неорганических частиц в пластический полиметилметакрилат, который можно перерабатывать при температуре 250°С в расплавленном состоянии, может происходить таким образом, например, при температуре 250°С и давлении 200 бар, с метанолом в качестве вещества, способствующего растворению.

Предпочтительно этанол имеет критическую температуру 243°С и критическое давление около 63 бар. Введение наноскалярных, неорганических частиц в пластический полиметилметакрилат, который можно перерабатывать при температуре 250°С в расплавленном состоянии, может происходить таким образом, например, при температуре 250°С и давлении 200 бар, с этанолом в качестве вещества, способствующего растворению.

При необходимости, вещество, способствующее растворению, этанол также можно применять в качестве диспергирующей водной фазы для наноскалярных, неорганических частиц и использовать вместе с метанолом в качестве вещества, способствующего растворению, для расплавов пластмассы.

Особенно предпочтительно данный способ осуществляют таким образом, что вначале термопластичная пластмасса, например полиметилметакрилат, расплавляют в экструдере при температуре от 200 до 350°С или от 200 до 300°С, предпочтительно от 220 до 280°С, в частности от 250 до 270°С, и давлении от 70 до 250 бар, предпочтительно от 170 бар до 230 бар, в частности от 180 до 220 бар, дозируют пригодное вещество, способствующее растворению, в концентрации от 10 до 30% масс., предпочтительно от 15 до 25% масс., в расчете на термопластичную пластмассу, вводят от 5 до 50, предпочтительно от 10 до 30% масс. дисперсии (масс./масс.) наноскалярных частиц в подобном или другом веществе, способствующем растворению, которое также находится в сверхкритическом состоянии в экструдере при названных температурах и давлениях, так что содержание наноскалярных частиц в пластмассе или в расчете на пластмассу устанавливают от 0,01 до 20% масс., предпочтительно от 0,1 до 10% масс., в частности от 1 до 5% масс.

Варианты способа

Стадии способа можно осуществлять, например, в следующей последовательности:

i) превращение термопластичных полимеров в расплавленное состояние,

ii) добавление наноскалярных, неорганических частиц в форме дисперсии в веществе, способствующем растворению, к полимерному расплаву и перемешивание компонентов,

iii) переведение смеси в сверхкритическое состояние.

Стадии способа можно альтернативно осуществлять в следующей последовательности:

i) превращение термопластичных полимеров в расплавленное состояние,

ii) одновременное или последующее введение вещества, способствующего растворению,

iii) переведение смеси в сверхкритическое состояние,

iv) добавление наноскалярных, неорганических частиц в форме дисперсии к сверхкритической смеси.

Кроме того, стадии способа можно осуществлять в следующей последовательности:

i) превращение термопластичных полимеров в расплавленное состояние,

ii) одновременное или последующее введение вещества, способствующего растворению,

iii) добавление наноскалярных, неорганических частиц в форме дисперсии,

iv) переведение смеси в сверхкритическое состояние.

Термопласт можно перемешивать вместе с наноскалярными, неорганическими частицами и веществом, способствующее растворению, при температуре от 200 до 300°С и давлении от 70 до 250 бар в экструдере.

Термопласт можно расплавлять в экструдере, например, при температуре от 200 до 300°С и давлении от 70 до 250 бар, дозировать вещество, способствующее растворению в концентрации от 10 до 30% масс., в расчете на термопласт. Также можно дозировать от 5 до 50%-ную (масс.%), предпочтительно от 10 до 30%-ную (масс.%) дисперсию наноскалярных, неорганических частиц в подобном или другом веществе, способствующем растворению, которое при названных температурах и давлениях также находится в экструдере в сверхкритическом состоянии, так что после вывода летучих или газообразных компонентов устанавливают содержание наноскалярных, неорганических частиц в пластмассе от 0,01 до 20% масс., в частности от 0,1 до 18% масс., предпочтительно от 1 до 10% масс.

Как вариант способа также можно получить грануляты из формовочной массы, которые содержат наноскалярные неорганические частицы. Также, если формовочная масса обладает высоким содержанием нежелательных агрегатов, то при применении предложенного согласно изобретению способа в одном из его вариантов она диспергируется снова до первичных частиц или, при необходимости, сверхструктур первичных частиц (смотри примеры 2 и 3).

Пропускной зазор/ регулирующий давление вентиль

Выбор пропускного зазора менее чем 20 мкм представляет специальные технические мероприятия, которые имеют особенное значение для осуществления данного изобретения (смотри пример 1). Мероприятия применяют не только для возвращения смеси в исходное состояние, а прежде всего для получения очень высоких интенсивностей сдвига. Выбор пропускного зазора менее чем 20 мкм обеспечивает то, что смесь проходит через него с интенсивностью сдвига от 10000 до 100000, предпочтительно от 20000 до 70000 с-1. Не было предсказуемым, что смесь может проходить через такой узкий пропускной зазор без технических проблем. В примере 4 демонстрируют, что пропускной зазор, уже 25 мкм, приводит к неудовлетворительным результатам.

Смесь из термопластичной пластмассы, наноскалярных, неорганических частиц и вещества, способствующего растворению, в сверхкритическом состоянии у выхода экструдера транспортируют через пропускной зазор менее чем 20 мкм, например от 1 до 20 мкм или от 1 до менее чем 20 мкм, предпочтительно от 2 до 10 мкм, в испарительный сосуд, например емкость, камеру-вспышку или другой экструдер. В этом состоянии смесь является жидкой и обладает жидким сверхкритическим состоянием, которое не может обозначаться ни как газообразное, ни как жидкое, так что она может проходить через пропускной зазор без технических проблем с очень высокой интенсивностью сдвига.

Предпочтительно для подготовки пропускного зазора используют регулирующий давление вентиль с кольцевым зазором. Поршневой диаметр может составлять, например, от 1 до 10 мм, предпочтительно от 2 до 5 мм. Ширина зазора предпочтительно находится в области от 1 до 20 мкм или от 1 до менее чем 20 мкм, предпочтительно от 2 до 10 мкм, при длине зазора от 5 до 30 мм, предпочтительно от 5 до 15 мм.

Конец регулирующего давление вентиля предпочтительно связан непосредственно с другим экструдером, предпочтительно экструдером с системой дегазации, и способствует возвращению смеси в термодинамическое равновесие при очень высоких интенсивностях сдвига, которые способствуют значительному гомогенному распределению и получению высоких частей первичных частиц. В другом экструдере или экструдере с системой дегазации можно удалить летучие компоненты. Расплавы с введенными, наноскалярными, неорганическими частицами выводят и можно после охлаждения измельчать до получения формовочной массы, гранулятов или порошка, или непосредственно переносить в формующее устройство, например плоскощелевое сопло или литьевое устройство или экструзионное формующее устройство, и там непосредственно формовать до получения формованного изделия.

Формовочная масса/ формованное изделие

Предложенную согласно изобретению формовочную массу или формованное изделие из термопластичной пластмассы получают описанным способом.

Формовочная масса или формованное изделие содержит наноскалярные неорганические частицы, например, в количествах от 0,01 до 20% масс., предпочтительно от 0,1 до 10% масс., в частности от 1 до 5% масс.

Причем формовочная масса или формованное изделие содержит наноскалярные неорганические частицы с содержанием первичных частиц или сверхструктур первичных частиц, самых маленьких частиц или субъединиц, выше 50%, предпочтительно, по меньшей мере, 75%, в частности, по меньшей мере, 90%, в расчете на число или сумму или совокупности частиц.

Если наноскалярные частицы находятся преимущественно в форме первичных частиц, под агрегатами понимают частицы, которые состоят из двух или более первичных частиц. Таким образом, например, при содержании первичных частиц 90% 10% частиц является агрегатами.

Если наноскалярные частицы находятся преимущественно в форме сверхструктур первичных частиц, которые составляют, например, из не более чем 100 первичных частиц или более незначительного числа первичных частиц (например, при составах сажи), под агрегатами понимают частицы, которые составляют из больших первичных частиц, чем сверхструктуры первичных частиц, и в большинстве случаев состоят из большой части или из большого количества агрегированных сверхструктур первичных частиц.

Таким образом, например, при содержании сверхструктур первичных частиц 90% 10% частиц является агрегатами.

Содержание первичных частиц в совокупности первичных частиц и агрегатов или сверхструктур первичных частиц и их агрегатов специалист в данной области может точно установить, например, с помощью оптического микроскопа, электронного микроскопа (ТЕМ) или путем микротомографии, например через измерение репрезентативного числа частиц (например, 50 или >50), путем фотограмметрической обработки снимков.

Предпочтительно термопластичная пластмасса, или формовочная масса, или формованное изделие содержит наноскалярные неорганические частицы с максимальным соотношением геометрических размеров первичных частиц по большей части 5, в частности по большей части 3, предпочтительно по большей части 2, особенно предпочтительно по большей части 1,5.

Применение

Предложенную согласно изобретению формовочную массу можно применять для получения формованных изделий с помощью известной термопластичной переработки, в частности экструзии, литья или других известных способов переработки пластмасс.

ПРИМЕРЫ

Пример 1 (согласно изобретению - пропускной зазор 10 мкм)

На лабораторном экструзионном агрегате, состоящем из одночервячного экструдера с диаметром червяка 45 мм и длиной червяка 36 Д и прифланцованного другого одночервячного экструдера с диаметром червяка 45 мм и длиной червяка 24 Д проводят испытание диспергирования наноскалярных, неорганических частиц.

С помощью гравиметрического дозирующего устройства в зону ввода первого экструдера вводят 10 кг/ч полиметилметакрилатной формовочной массы (полимера из 96% масс. метилметакрилата и 4% масс. метилакрилата) в виде гранулятов. После перевода гомогенного термопластичного расплава в смешивающую зону, состоящую из кавитационного червячного смесителя (СТМ), с помощью дозирующего насоса LEWA в экструдер накачивают метанол при давлении 200 бар и в количестве 2,0 кг/ч. В другую смешивающую зону, которая также снабжена СТМ, с помощью мембранного дозирующего насоса в экструдер накачивают водную дисперсию 25% (% масс.) наноскалярного SiO2 со средней величиной первичных частиц 5 нм и максимальным соотношением геометрических размеров первичных частиц менее чем 2 в количестве 1,2 кг/ч.

В конце экструдера установлен регулирующий давление вентиль, который имеет 3-мм цилиндрическую вентильную насадку. При положении вентиля 80% хода вентиля устанавливают пропускной зазор менее 20 мкм, а именно 10 мкм, который приводит к уровню давления в экструдере 200 бар. Измеренная температура расплава составляет 250°С.

Через регулирующий давление вентиль получают прямое соединение с дополнительно присоединенным экструдером. После прохождения пропускного зазора регулирующего давление вентиля, которое происходит с крайне высокой интенсивностью сдвига, смесь из полимера, растворителя, воды и в ней находящихся наноскалярных, неорганических частиц дегазируют, летучие фракции выпаривают и перегоняют через два дегазационных отверстия экструдера. Зоны дегазации функционируют при различных уровнях давления и разделены техническим вакуумом.

Освобожденные от летучих компонентов полимерные расплавы с наноскалярными неорганическими частицами формуют через дырочное сопло в штранги, перегоняют через водяную баню и разрезают с помощью гранулятора. Из полученных таким образом гранулятов на литьевой машине Battenfeld BA 350 CD отливают пластины с размерами 65×40×3. На пластинах с помощью микроскопа исследуют распределение наноскалярных неорганических частиц SiO2.

Не обнаружено никаких агрегатов в литых пластинах. При визуальном рассмотрении пластины демонстрируют очень хорошие оптические характеристики исходного материала с легкой мутностью. Часть первичных частиц, в расчете на первичные частицы и агрегаты, можно определить путем анализа изображений с помощью электронного микроскопа и находится, например, при 85%.

Пример 2 (сравнительный пример - без пропускного зазора)

На дисковом пластикаторе Leistritz LMS 30.34 через гравиметрическое дозирующее устройство фирмы Engelhardt в зону ввода экструдера 10 кг/ч подводят полиметилметакрилатную формовочную массу (полимера из 96% масс. метилметакрилата и 4% масс. метилакрилата), втягивают и пластифицируют.

Через дозирующее устройство, состоящее из расширительного вентиля, трубопровода и мембранного насоса, в экструдер перекачивают 1,2 кг/ч водной нанодисперсии SiO2 из примера 1. Зону смешивания экструдера, в которую перекачивают нанодисперсию, для достижения наилучшего смешивающего действия оснащают смесительными элементами и смесительными блоками, которые известны специалисту в данной области и рекомендуются поставщиками экструдеров.

В следующей зоне дегазации удаляют летучие фракции, с помощью литейного сопла экструдируют штранги, охлаждают и разрезают с помощью гранулятора.

Из полученных гранулятов, как описывают в примере 1, отливают пластины с размерами 65×40×3 и визуально анализируют. Отчетливо определяют большие, агрегированные, наноскалярные частицы SiO2. Часть первичных частиц можно определить путем анализа изображений с помощью электронного микроскопа и находится ниже 20%.

Пример 3 (согласно изобретению - переработка гранулята из примера 2)

10 кг/ч продукта, полученного из примера 2, на устройстве для нанодиспергирования согласно примеру 1 со встроенным там гравиметрическим дозирующим устройством подводят в зону ввода экструдера. Соответственно примеру 1 в первую смешивающую зону дозируют 2,0 кг/ч метанола. Установленные параметры, давление и температура, идентичны установленным параметрам, применяемым в примере 1. Из полученных гранулятов отливают пластины. Полученные литые изделия демонстрируют почти не содержащие агломератов, диспергируемые наночастицы. Часть первичных частиц можно определить путем анализа изображений с помощью электронного микроскопа и находится, например, при 85%.

Пример 4 (сравнительный пример - пропускной зазор 25 мкм)

Пример 4 соответствует примеру 1 с отличием, что при положении вентиля 40% хода вентиля устанавливают пропускной зазор 25 мкм. Из полученных гранулятов, как описывают в примере 1, отливают пластины 65×40×3 мм и визуально анализируют. Отчетливо определяют большие, агрегированные, наноскалярные частицы SiO2. Часть первичных частиц можно определить путем анализа изображений с помощью электронного микроскопа и находится ниже 35%.

Пример 5 (Кассиев золотой пурпур)

Водную дисперсию наноскалярного SiO2 из примера 1 для целей испытания можно замещать коллоидным золотым раствором, так называемым Кассиевым золотым пурпуром. Коллоидный золотой раствор содержит Н2О, а также элементы Au, Sn, Сl и, при необходимости, Sl; исходным соединением является тетрахлоргидроаурат (HAuCl4) и имеет темно-красный, пурпуровый цвет.«Кассиев золотой пурпур» известен специалисту в данной области. Полученные наноскалярные золотые частицы находятся преимущественно в виде первичных частиц со средней величиной первичных частиц в области от 20 до 30 нм. Увеличенное образование агрегатов в коллоидном «золотом» растворе показывают изменением окраски после синего цвета или коричневого цвета.

В предложенном согласно изобретению способе, например согласно примеру 1, «золотые» частицы вводят в полиметилметакрилатную матрицу, например, в концентрации в области 10 частей на млн. Из полученных гранулятов, как описывают в примере 1, отливают пластины и визуально анализируют. Получают блестящую полиметилметакрилатную литую деталь от темно-красного до пурпурового цвета. Из спектра длины волн получают, что положение максимума поглощения в области 50-580 нм полиметилметакрилатной литой детали и коллоидного исходного раствора почти совпадает. Это может служить как доказательство, что с помощью предложенного согласно изобретению способа значительно предотвращают агломерацию первичных частиц, происходящих из коллоидного «золотого» раствора.

1. Способ получения формовочной массы из термопластичной пластмассы, содержащей наноскалярные неорганические частицы, причем термопластичную пластмассу в расплавленном состоянии перемешивают с наноскалярными неорганическими частицами и веществом, способствующим растворению, в экструдере с червячной транспортировкой, причем устанавливают давление и температуру, при которых пластмасса находится в виде расплава и вещество, способствующее растворению, в сверхкритическом состоянии, отличающийся тем, что смесь на выходе экструдера подают через пропускной зазор менее чем 20 мкм в зону декомпрессии и выводят расплав с введенными наноскалярными неорганическими частицами, а после охлаждения измельчают до получения формовочной массы.

2. Способ по п.1, отличающийся тем, что наноскалярные неорганические частицы состоят из оксида индия-олова (ITO), диоксида кремния (SiO2), гидроксида алюминия (Аl2(ОН)3), оксида цинка (ZnO), диоксида титана (ТiO2), BaSO4 или сажи, и имеют среднюю величину первичных частиц в области от 4 до 999 нм.

3. Способ по п.1, отличающийся тем, что в качестве вещества, способствующего растворению, используют CO2, N2O, ксенон, криптон, метанол, этанол, изопропанол или изобутанол, или смесь названных веществ, способствующих растворению.

4. Способ по п.1, отличающийся тем, что наноскалярные неорганические частицы вводят в смесь в форме дисперсии.

5. Способ по п.4, отличающийся тем, что дисперсия показывает содержание твердого вещества от 5 до 50 мас.% на наноскалярные неорганические частицы.

6. Способ по п.1, отличающийся тем, что используют наноскалярные неорганические частицы с соотношением геометрических размеров первичных частиц максимум 5 и вводят в смесь в форме стабилизированной дисперсии, в которой находятся частицы до, по меньшей мере, 70% в виде первичных частиц или сверхструктур первичных частиц, которые состоят из не более чем 30 первичных частиц.

7. Способ по п.4, отличающийся тем, что дисперсия наноскалярных неорганических частиц находится в жидкости, которая не является веществом, способствующим растворению, согласно п.1.

8. Способ по п.7, отличающийся тем, что дисперсия находится в воде.

9. Способ по п.1, отличающийся тем, что дисперсия наноскалярных неорганических частиц находится в веществе, способствующему растворению, согласно п.1.

10. Способ по п.1, отличающийся тем, что зоной декомпрессии для возвращения смеси в исходное состояние является другой червячный экструдер.

11. Способ по п.10, отличающийся тем, что с помощью второго червячного экструдера удаляют летучие компоненты.

12. Способ по п.1, отличающийся тем, что термопластичной пластмассой является полиамид, полиметилметакрилатная пластмасса, модифицированный ударопрочный полиметилметакрилат, поликарбонатная пластмасса, а также полиэфиркарбонаты, полистирольная пластмасса, пластмасса из стирола-акрилолитрила, пластмасса из полиэтилентерефталата, гликольмодифицированная пластмасса из полиэтилентерефталата, пластмасса из поливинилхлорида, прозрачные полиолефиновые пластмассы, полиэтилен, полипропилен, пластмасса из акрилонитрила-бутадиена-стирола (АБС), циклолефиновые сополимеры (ЦОС) и/или смесь/смеси различных термопластичных пластмасс.

13. Способ по п.1, отличающийся тем, что стадии способа осуществляют в следующей последовательности:
i) превращение термопластичных полимеров в расплавленное состояние;
ii) добавление наноскалярных неорганических частиц в форме дисперсии в веществе, способствующем растворению, к полимерному расплаву и перемешивание компонентов;
iii) перевод смеси в сверхкритическое состояние.

14. Способ по п.1, отличающийся тем, что стадии способа осуществляют в следующей последовательности:
i) превращение термопластичных полимеров в расплавленное состояние;
ii) одновременное или последующее введение вещества, способствующего растворению;
iii) перевод смеси в сверхкритическое состояние;
iv) добавление наноскалярных неорганических частиц в форме дисперсии к сверхкритической смеси.

15. Способ по п.1, отличающийся тем, что стадии способа осуществляют в следующей последовательности:
i) превращение термопластичных полимеров в расплавленное состояние;
ii) одновременное или последующее введение вещества, способствующего растворению;
iii) добавление наноскалярных неорганических частиц в форме дисперсии;
iv) перевод смеси в сверхкритическое состояние.

16. Способ по п.1, отличающийся тем, что термопластичную пластмассу вместе с наноскалярными неорганическими частицами и веществом, способствующим растворению, перемешивают в экструдере при температуре от 200 до 350°С и давлении от 70 до 250 бар.

17. Способ по п.1, отличающийся тем, что вещество, способствующее растворению, дозируют в концентрации от 10 до 30 мас.% в расчете на термопластичную пластмассу.

18. Способ по п.1, отличающийся тем, что в пластмассе устанавливают содержание от 0,01 до 20 мас.% наноскалярных неорганических частиц.

19. Способ по п.1, отличающийся тем, что используют регулирующий давление вентиль с кольцевым зазором, поршневым диаметром от 1 до 10 мм, шириной зазора от 1 мкм до менее чем 20 мкм и длиной зазора от 5 до 30 мм.

20. Способ по одному или нескольким пп.1-19, отличающийся тем, что смесь проходит через пропускной зазор с интенсивностью сдвига от 10000 до 100000 с-1

21. Формовочная масса, отличающаяся тем, что она получена способом по одному или нескольким пп.1-20, при этом в ней содержатся наноскалярные неорганические частицы и часть первичных частиц или сверхструктур первичных частиц, которые состоят из не более чем 100 первичных частиц, в количестве больше 50%, в расчете на число частиц.

22. Формовочная масса по п.21, отличающаяся тем, что наноскалярные неорганические частицы имеют первичные частицы с соотношением геометрических размеров максимум 5.

23. Применение формовочной массы по п.21 или 22 для получения формованных изделий с помощью термопластичной переработки, в частности экструзии, литьевого формования или инжекционного прессования.

24. Способ получения формованного изделия из термопластичной пластмассы, содержащей наноскалярные неорганические частицы, причем термопластичную пластмассу в расплавленном состоянии перемешивают с наноскалярными неорганическими частицами и веществом, способствующим растворению, в экструдере с червячной транспортировкой, причем устанавливают давление и температуру, при которых пластмасса находится в виде расплава, и вещество, способствующее растворению, в сверхкритическом состоянии, отличающийся тем, что смесь на выходе экструдера подают через пропускной зазор менее чем 20 мкм в зону декомпрессии и выводят расплав с введенными наноскалярными неорганическими частицами, а после охлаждения переводят в формующее устройство и формуют до получения формованного изделия.

25. Способ по п.24, отличающийся тем, что наноскалярные неорганические частицы состоят из оксида индия-олова (ITO), диоксида кремния (SiO2), гидроксида алюминия (Аl2(ОН)3), оксида цинка (ZnO), диоксида титана (TiO2), BaSO4 или сажи и имеют среднюю величину первичных частиц в области от 4 до 999 нм.

26. Способ по п.24, отличающийся тем, что в качестве вещества, способствующего растворению, используют СO2, N2O, ксенон, криптон, метанол, этанол, изопропанол или изобутанол или смесь названных веществ, способствующих растворению.

27. Способ по п.24, отличающийся тем, что наноскалярные неорганические частицы вводят в смесь в форме дисперсии.

28. Способ по п.27, отличающийся тем, что дисперсия показывает содержание твердого вещества от 5 до 50 мас.% на наноскалярные неорганические частицы.

29. Способ по п.24, отличающийся тем, что используют наноскалярные неорганические частицы с соотношением геометрических размеров первичных частиц максимум 5 и вводят в смесь в форме стабилизированной дисперсии, в которой находятся частицы до, по меньшей мере, 70% в виде первичных частиц или сверхструктур первичных частиц, которые состоят из не более чем 30 первичных частиц.

30. Способ по п.27, отличающийся тем, что дисперсия наноскалярных неорганических частиц находится в жидкости, которая не является веществом, способствующим растворению, согласно п.1.

31. Способ по п.30, отличающийся тем, что дисперсия находится в воде.

32. Способ по п.24, отличающийся тем, что дисперсия наноскалярных неорганических частиц находится в веществе, способствующем растворению, согласно п.1.

33. Способ по п.24, отличающийся тем, что зоной декомпрессии для возвращения смеси в исходное состояние является другой червячный экструдер.

34. Способ по п.33, отличающийся тем, что с помощью второго червячного экструдера удаляют летучие компоненты.

35. Способ по п.24, отличающийся тем, что термопластичной пластмассой является полиамид, полиметилметакрилатная пластмасса, модифицированный ударопрочный полиметилметакрилат, поликарбонатная пластмасса, а также полиэфиркарбонаты, полистирольная пластмасса, пластмасса из стирола-акрилонитрила, пластмасса из полиэтилентерефталата, гликольмодифицированная пластмасса из полиэтилентерефталата, пластмасса из поливинилхлорида, прозрачные полиолефиновые пластмассы, полиэтилен, полипропилен, пластмасса из акрилонитрила-бутадиена-стирола (АБС), циклолефиновые сополимеры (ЦОС) и/или смесь/смеси различных термопластичных пластмасс.

36. Способ по п.24, отличающийся тем, что стадии способа осуществляют в следующей последовательности:
iv) превращение термопластичных полимеров в расплавленное состояние;
v) добавление наноскалярных неорганических частиц в форме дисперсии в веществе, способствующем растворению, к полимерному расплаву и перемешивание компонентов;
vi) перевод смеси в сверхкритическое состояние.

37. Способ по п.24, отличающийся тем, что стадии способа осуществляют в следующей последовательности:
v) превращение термопластичных полимеров в расплавленное состояние;
vi) одновременное или последующее введение вещества, способствующего растворению;
vii) перевод смеси в сверхкритическое состояние;
viii) добавление наноскалярных неорганических частиц в форме дисперсии к сверхкритической смеси.

38. Способ по п.24, отличающийся тем, что стадии способа осуществляют в следующей последовательности:
v) превращение термопластичных полимеров в расплавленное состояние;
vi) одновременное или последующее введение вещества, способствующего растворению;
vii) добавление наноскалярных неорганических частиц в форме дисперсии;
viii) перевод смеси в сверхкритическое состояние.

39. Способ по п.24, отличающийся тем, что термопластичную пластмассу вместе с наноскалярными неорганическими частицами и веществом, способствующим растворению, перемешивают в экструдере при температуре от 200 до 350°С и давлении от 70 до 250 бар.

40. Способ по п.24, отличающийся тем, что вещество, способствующее растворению, дозируют в концентрации от 10 до 30 мас.% в расчете на термопластичную пластмассу.

41. Способ по п.24, отличающийся тем, что в пластмассе устанавливают содержание от 0,01 до 20 мас.% наноскалярных неорганических частиц.

42. Способ по п.24, отличающийся тем, что используют регулирующий давление вентиль с кольцевым зазором, поршневым диаметром от 1 до 10 мм, шириной зазора от 1 мкм до менее чем 20 мкм и длиной зазора от 5 до 30 мм.

43. Способ по одному или нескольким пп.1-20, отличающийся тем, что смесь проходит через пропускной зазор с интенсивностью сдвига от 10000 до 100000 с-1.

44. Формованное изделие, отличающееся тем, что оно получено способом по одному или нескольким пп.24-43, при этом в нем содержатся наноскалярные неорганические частицы и часть первичных частиц или сверхструктур первичных частиц, которые состоят из не более чем 100 первичных частиц, в количестве больше 50% в расчете на число частиц.

45. Формованное изделие по п.44, отличающееся тем, что наноскалярные неорганические частицы имеют первичные частицы с соотношением геометрических размеров максимум 5.



 

Похожие патенты:
Изобретение относится к полимерным композициям, применяемым в качестве конструкционного материала в различных отраслях, преимущественно для изготовления предохранительных деталей резьбовых частей труб.
Изобретение относится к медицинской технике и может быть использовано при изготовлении искусственных клапанов сердца с одной или несколькими створками из полимерного композита.
Изобретение относится к области переработки отходов резины, в частности резиновой крошки из изношенных шин. .

Изобретение относится к композитам на основе силиката щелочного металла и полиизоцианта и, в частности, к способу получения композитов на основе силиката щелочного металла и полиизоцианта, происходящему без выделения катализатора.

Изобретение относится к получению жестких пенополиуретанов. .

Изобретение относится к резиновой промышленности и предназначено для установки между деталями и узлами двигателей внутреннего сгорания. .

Изобретение относится к области технологии эпоксидных композиций, в частности к получению быстроотверждающих эпоксидных композиций горячего формования, используемых в качестве связующего для производства композиционных материалов и изделий из них, например армированных пластиков, в том числе пултрузионным методом.

Изобретение относится к области получения новых бромсодержащих сополимеров на основе тетрафторэтилена. .

Изобретение относится к способу получения наполненного кремнеземом и/или глиной галогенбутильного эластомера. .

Изобретение относится к области бромсодержащих сополимеров на основе тетрафторэтилена. .

Изобретение относится к резиновой промышленности, в частности к способу изготовления резиновой смеси на основе каучуков в виде блоков. .

Изобретение относится к процессу получения смесей на основе наполнителя и синтетических каучуков, которые могут быть использованы в резиновой и шинной промышленности, в частности для изготовления протекторов высокоскоростных зимних и летних шин.

Изобретение относится к каучуковой смеси, к способу ее получения и применению. .

Изобретение относится к композиции, которая включает в себя специфическую несшиваемую среду и, по меньшей мере, один микрогель, способам ее получения, использования названных композиций, микрогель-содержащих полимеров, резин, смазочных материалов, покрытий и т.д., полученных из них.

Изобретение относится к водной дисперсии для маслоотталкивающей обработки бумаги, тонкого картона и изделий из целлюлозы. .
Изобретение относится к способу получения гранул из политетрафторэтилена, содержащих наполнитель. .
Изобретение относится к набухающим в воде композициям, а также их получению и применению
Наверх