Способ азотирования в плазме тлеющего разряда

Изобретение относится к плазменной химико-термической обработке поверхности изделий и может быть использовано в машиностроении. Для интенсификации процесса азотирования, повышения контактной долговечности и износостойкости упрочненного слоя в изделии проводят азотирование стальных изделий в тлеющем разряде путем вакуумного нагрева в плазме азота повышенной плотности, а затем закалку, при этом плазму азота повышенной плотности формируют в кольцевой области вращения электронов, захваченных магнитным полем, силовые линии которого параллельны обрабатываемой поверхности, при этом электронное облако максимально локализовано у детали-катода. 2 ил.

 

Изобретение относится к плазменной химико-термической обработке поверхности деталей и может быть использовано в машиностроении для повышения надежности и долговечности широкого ассортимента деталей машин и инструмента, а также позволяет интенсифицировать процесс азотирования.

Известен способ нанесения износостойкого покрытия на поверхности изделий из стали, в частности на детали машин, включающий ионно-плазменное азотирование в среде реактивного газа - азота, очистку поверхности детали и нанесение нитрида титана из плазменной фазы (RU 2013463 С1, 30.05.94). Способ позволяет создать переходную область между покрытием и материалом самого изделия.

Недостатками аналога являются сложность оборудования и технологии, а также необходимость проектирования специального оборудования для перемещения изделий. Перемещение изделий дополнительно усложняет и увеличивает длительность всей работы.

Известен способ получения азотированных ферросплавов, содержащих компоненты, обладающие большим сродством к азоту, при котором расплавленные исходные материалы выдерживают в атмосфере азота или других азотосодержащих газов. Содержащийся в газовой фазе азот растворяется в металлическом расплаве, а при затвердевании расплава выделяется в виде дисперсной нитридной фазы, распределенной в металлической матрице (см. Гасик М.И. и др. Теория и технология производства ферросплавов. - М.: Металлургия, 1988. - С.382-384).

Недостатком известного способа является необходимость длительной (несколько часов) выдержки ферросплава в жидком состоянии в атмосфере азотосодержащего газа, что требует большого расхода энергии на поддержание температуры расплава, а также низкое (1…2%) содержание азота в сплаве, обусловленное малой растворимостью азота в сплавах при высокой температуре азотирования компонентов.

Наиболее близким по технической сущности и достигаемому эффекту к заявляемому является способ (Патент РФ №2276201, кл. С23С 8/36 10.05.2008) азотирования изделий в тлеющем разряде с эффектом полого катода, включающий азотирование в тлеющем разряде, для осуществления которого проводят вакуумный нагрев изделий в плазме азота повышенной плотности, формируемой между деталью и экраном за счет создания эффекта полого катода.

Недостатком прототипа является распыление и внедрение в азотируемый слой материала сетки полого катода, что снижает твердость получаемого покрытия.

Задачей, на решение которой направлено предлагаемое изобретение является интенсификация процесса азотирования, повышение контактной долговечности и износостойкости упрочненного слоя.

Задача решается за счет использования способа обработки стальных изделий, включающего азотирование в тлеющем разряде и закалку, для осуществления которого проводят вакуумный нагрев изделий в плазме азота повышенной плотности, и в отличие от прототипа плазму азота повышенной плотности формируют в кольцевой области вращения электронов, захваченных магнитным полем, силовые линии которого параллельны обрабатываемой поверхности, при этом электронное облако максимально локализовано у детали-катода.

Существо изобретения поясняется чертежами.

На фиг.1, 2 изображена схема реализации способа вакуумного ионно-плазменного азотирования изделий из стали. Схема содержит источник питания 1, катод-деталь 2, магнит 3, анод 4, корпус вакуумной камеры 5, электронное облако 6, силовые линии магнитного поля 7, обрабатываемые заготовки 8.

Пример конкретной реализации способа.

В вакуумной камере устанавливают обрабатываемые детали по кольцевой траектории, например наконечники резцов из инструментальной стали Р6М5. Затем в камере создают рабочее давление, равное 100 Па, необходимое для зажигания тлеющего разряда. В камеру подают смесь газов (N2 50%-80%, Ar 25%-10%, С2Н2 25%-10%) и прогревают детали до температуры 500÷540°С, при этом происходит азотирование в течение 3-5 часов, после чего деталь дополнительно нагревают до 900-1000°С, выдерживают 15-20 минут и резко охлаждают в потоке гелия со скоростью, превышающей критическую скорость закалки.

Температура Кюри для материала магнита составляет порядка 300-350°С. Так как магнит находится внутри рабочей камеры, а температура азотирования составляет 500÷540°С, то магнит необходимо охлаждать. Для этого в полости магнита, указанной на чертеже, циркулирует вода.

Все процессы проходят в одной камере и в одной атмосфере, что позволяет максимально снизить вспомогательное время, затрачиваемое на подготовительные операции, которые связаны с использованием разного оборудования и оснастки.

Необходимо отметить следующие преимущества заявленного способа: высокая технологичность процесса, экологическая чистота процесса за счет отсутствия вредных производственных выбросов в атмосферу, простота схемы обработки, не требующая проектирования специальных приспособлений и сравнительно невысокая стоимость оборудования.

Способ обработки стальных изделий, включающий азотирование в тлеющем разряде, для осуществления которого проводят вакуумный нагрев изделий в плазме азота повышенной плотности и закалку, отличающийся тем, что плазму азота повышенной плотности формируют в кольцевой области вращения электронов, захваченных магнитным полем, силовые линии которого параллельны обрабатываемой поверхности, при этом электронное облако максимально локализовано у детали-катода.



 

Похожие патенты:

Изобретение относится к области химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для поверхностного упрочнения материалов.

Изобретение относится к химико-термической обработке металлов, в частности к азотированию. .
Изобретение относится к области машиностроения, в частности к технологии упрочнения и повышения износостойкости инструментов и деталей. .

Изобретение относится к получению изделий из псевдо- или ( + ) титановых сплавов, предназначенных для длительной эксплуатации в парах трения с полимерными или металлическими материалами и биологическими тканями.

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для поверхностного упрочнения деталей машин режущего инструмента из конструкционных сложнолегированных и инструментальных сталей, работающих при высоких контактных напряжениях и в условиях повышенного износа.

Изобретение относится к области вакуумно-дуговой обработки металлических изделий перед нанесением покрытий и может быть использовано в металлургии, машиностроении и других отраслях.

Изобретение относится к химико-термической обработке, в частности к ионному азотированию. .

Изобретение относится к области химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для высокотемпературного азотирования стальных деталей машин.

Изобретение относится к машиностроению и может быть использовано при ионно-плазменной обработке. .

Изобретение относится к области металлургии, в частности к химико-термической обработке в тлеющем разряде, и может быть использовано в машиностроении. .

Изобретение относится к области химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для поверхностного упрочнения материалов.
Изобретение относится к области химико-термической обработки сплавов и может быть использовано для изготовления высокотемпературных деталей и узлов горячего тракта газотурбинных авиационных двигателей и других изделий, работающих при температурах до 1100-1200°С с кратковременным увеличением до 1300°С.

Изобретение относится к металлургии, а именно к способам упрочнения металлов азотированием, и может быть использовано при изготовлении деталей из титановых сплавов, работающих при циклических нагрузках.
Изобретение относится к сварке, а именно к диффузионной сварке слоистых конструкций из титановых сплавов, преимущественно криволинейного профиля, и может быть использовано, например, при изготовлении теплообменников энергетических силовых установок.

Изобретение относится к устройствам для химико-термической обработки сталей и сплавов в газовых средах с использованием автоматического управления. .

Изобретение относится к способам изготовления деталей с упрочненной рабочей поверхностью, в частности к способу получения многослойного покрытия на стальной или чугунной поверхности.

Изобретение относится к области поверхностного упрочнения путем азотирования деталей и может быть использовано при изготовлении широкой номенклатуры деталей и инструмента.
Изобретение относится к порошковой металлургии и способам газовой низкотемпературной химико-термической обработки, в частности к способам азотирования металлических материалов на основе железа.

Изобретение относится к порошковой металлургии и способам газовой низкотемпературной химико-термической обработки, в частности к способам азотирования металлических материалов на основе железа.

Изобретение относится к технологии и оборудованию для газового азотирования в кипящем слое катализатора для низкотемпературной и высокотемпературной упрочняющей обработки поверхностей сталей и сплавов.
Наверх