Способ получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов на основе интерметаллида молибдена. Может использоваться для деталей, предназначенных для длительной эксплуатации при высоких температурах в условиях значительных механических и термических нагрузок, таких как жаростойкие детали ГТД, в частности рабочие и сопловые лопатки, элементы жаровых труб. Путем размола в два этапа получают порошок кремния, при этом на первом этапе металлический кремний размалывают до частиц размером около 100 мкм, а затем до размера менее 40 мкм. Готовят смесь из порошков молибдена, бора и кремния и подвергают ее механическому легированию при 40-50°С в защитной рабочей жидкости. Горячее компактирование порошковой смеси осуществляют методом экструзии при температуре 1100-1200°С с коэффициентом вытяжки не менее 1:6. Способ позволяет получить композиционный материал на основе интерметаллида молибдена с высоким уровнем прочностных свойств, заданным химическим составом и высоким уровнем выхода годного, при сокращении времени его получения.

 

Изобретение относится к способам получения композиционных материалов на основе интерметаллида молибдена, предназначенных для длительной эксплуатации при высоких температурах в условиях значительных механических и термических нагрузок. Такие металлические композиционные материалы могут быть использованы в качестве жаростойких деталей ГТД: рабочих и сопловых лопаток, элементов жаровых труб, а также других деталей машин, работающих при температурах до 1400°С.

Известен способ получения тугоплавких композиционных материалов с металлической или интерметаллидной матрицей, армированной керамическими частицами, включающий приготовление исходной заготовки из порошковой смеси механическим легированием, помещение заготовки в емкость и нагрев емкости до температуры начала экзотермической реакции путем погружения ее донной части в расплав металла и последующую кристаллизацию путем дальнейшего погружения емкости в расплав металла (Патент РФ №2263089).

Недостатком этого способа является то, что тепла, выделяющегося в процессе экзотермической реакции, недостаточно для образования упрочняющих фаз и, следовательно, для изготовления металлических композиционных материалов на основе молибдена.

Известен способ получения композиционного материала на основе интерметаллидной металлической матрицы, содержащей карбид кремния в качестве керамического упрочнителя. Карбид кремния берут в форме нитевидных кристаллов. В качестве матричного материала используют дисилицид молибдена. Способ заключается в приготовлении смеси порошка матричного материала и керамического упрочнителя в скоростном смесителе типа кофемолки и дальнейшем горячем прессовании (Патент США №4,927,792).

Недостатком этого способа является высокая стоимость нитевидных кристаллов карбида кремния, которая делает продукцию из этого материала неоправданно дорогой, тогда как в процессе помола эти усы все равно измельчают, а стоимость порошков кремния и бора в сотни раз ниже стоимости нитевидных кристаллов этого материала. Кроме того, после горячего прессования относительная плотность полученного материала составляет 97%, что не позволяет получать композиционный материал с высокими механическими свойствами.

За прототип принят способ получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена, включающий перемешивание порошков молибдена, бора, кремния, механическое легирование смеси в защитной атмосфере (водород) при температуре 100-150°С, горячее компактирование (прессование и штамповку) осуществляют при температуре 1100-1900°С, деформацию в суперпластичном состоянии при температуре 1000-1600°С, с последующей термообработкой при 1400-1900°С (Заявка США №2006/0285990).

Использование данного метода не позволяет получать композиционный материал, обладающий высокой прочностью и высоким выходом годного. Кроме того, использование в качестве защитной атмосферы газа, в частности водорода, что делает сам процесс чрезвычайно взрывоопасным.

Технической задачей данного изобретения является разработка способа получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена с равномерной структурой, высокой относительной плотностью и высокой прочностью, который обеспечивает высокий выход годного при минимальных материальных и энергетических затратах.

Для достижения поставленных задач предложен способ получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена, включающий смешивание порошков молибдена, бора, кремния, механическое легирование смеси в защитной атмосфере и последующее горячее компактирование порошковой смеси, отличающийся тем, что порошок кремния получают путем размола металлического кремния в 2 этапа, на первом этапе металлический кремний размалывают до частиц размером около 100 мкм, а на втором этапе - до размера менее 40 мкм, механическое легирование смеси осуществляют при температурах 40-50°С, в качестве защитной атмосферы используют рабочую жидкость, а горячее компактирование порошковой смеси осуществляют методом экструзии при температуре 1100-1200°С с коэффициентом вытяжки не менее 1:6, с предварительным капсулированием порошковой смеси и дегазацией в вакууме при температуре 1200-1250°С до полного прекращения газовыделения.

Порошковую смесь предварительно капсулируют и дегазируют в вакууме при температуре 1200-1250°С до полного прекращения газовыделения.

Так как мелкодисперсный порошок кремния чрезвычайно гигроскопичен, размол проводят непосредственно перед операцией смешивания. Таким образом, время хранения порошка сводится к минимальному, что, в свою очередь, снижает количество воды, абсорбированной порошком из воздуха, и, как следствие это положительно сказывается на качестве материала и его свойствах.

В качестве рабочей жидкости используют абсолютный спирт (этиловый, изопропиловый). При использовании газа в качестве защитной атмосферы в рабочей камере аттритора появляются «мертвые» зоны, в которых скапливается материал и не подвергается механическому легированию (МЛ). Для исчезновения мертвых зон необходим большой промежуток времени, что увеличивает общее время проведения процесса МЛ. Также существует «неудаляемая» мертвая зона (в районе отверстия выгрузки аттритора), которая влияет на качество материала, т.к. скопившийся там материал (100-200 г) вообще не участвует в процессе МЛ и при выгрузке добавляется в следующую партию загружаемого материала. Для предотвращения появления таких зон предложено использовать в качестве защитной атмосферы инертную жидкость. При использовании жидкости в рабочей камере аттритора образуется суспензия спирта и шихты, которая при вращении вала аттритора циркулирует по всему объему рабочей камеры, тем самым препятствует образованию «мертвых» зон. Таким образом, при использовании жидкости вся загружаемая шихта подвергается процессу МЛ с самого начала обработки (без образования мертвых зон), тем самым позволяя сократить время проведения МЛ. Также при использовании жидкости не требуется применять защитные устройства при выгрузке аттритора, тогда как при выгрузке без жидкости образуется смесь воздуха (газа) и выгружаемого порошка, которая может быть пожаровзрывоопасна (температура в рабочей камере аттритора при использовании газа достигает 100-120°С, а при использовании рабочей жидкости 40-50°С).

Компактирование механически легированной смеси порошков осуществляют методом экструзии (температура экструзии 1100-1200°С) с предварительным капсулированием и дегазацией при температуре 1200-1250°С, что обеспечивает предотвращение взаимодействия механически легированного порошка с атмосферой, исключение появления хрупких оксидов в структуре материала, а также при экструзии зерна композиционного материала вытягиваются вдоль направления экструзии, что положительно сказывается на прочностных свойствах готового материала. Температуру экструзии определили эмпирическим путем, она составила 1100-1200°С.

Предложенный способ получения композиционного материала позволяет получать композиционные гранулы с заданным химическим составом и равномерно распределенным по объему каждой гранулы фазовым составом после проведения процесса механического легирования в течение выбранного интервала времени, а компактные образцы с высоким уровнем плотности и прочностных свойств после экструзии в выбранном интервале температур.

Пример 1

Получение композиционного материала состава Мо-15Si-5В (вес.%).

Для получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена использовали элементарные промышленные порошки молибдена, бора, кремния. Порошок кремния получали размолом металлического кремния: вначале размалывали на гидравлическом прессе до размера частиц менее 100 мкм, а затем в валковой мельнице до размера менее 40 мкм. Исходные порошки в количествах, соответствующих химическому составу, смешивали. Исходную порошковую смесь подвергли механическому легированию в высокоэнергетической установке для размола и смешивания (атритторе) по следующему режиму: время обработки - 20 ч, защитная атмосфера - абсолютированный этиловый спирт, температура в рабочей камере - 50°С. Затем капсулировали с последующей дегазацией при температуре 1250°С и экструдировали при температуре 1200°С, коэффициент вытяжки 1:6. Относительная плотность полученного материала составила 0,99, σ1200в=500-600 МПа, при заданном химическом составе (основа твердый р-р Мо плюс упрочняющие фазы) и равномерно распределенными по объему композиционного материала фазами Mo3Si Mo5SiB2. Равномерность распределения фазового состава определяют путем исследования микроструктуры методами растровой электронной микроскопии. Время получения композиционного материала 35-40 ч, выход годного - 95%.

Пример 2

Получение композиционного материала состава Мо-15Si-5В (вес.%).

Для получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена использовали элементарные промышленные порошки молибдена, бора, кремния. Порошок кремния получали размолом металлического кремния: вначале размалывали на гидравлическом прессе до размера частиц мене 80 мкм, а затем в валковой мельнице до размера менее 40 мкм. Исходные порошки в количествах, соответствующих химическому составу, смешивали. Исходную порошковую смесь подвергли механическому легированию в высокоэнергетической установке для размола и смешивания (атритторе) по следующему режиму: время обработки - 20 ч, защитная атмосфера - абсолютированный изопропиловый спирт, температура в рабочей камере - 40°С. Затем капсулировали с последующей дегазацией при температуре 1200°С и экструдировали при температуре 1100°С коэффициент вытяжки 1:6. Относительная плотность полученного материала составила 0,98, σ1200в=500-600 МПа, при заданном химическом составе (основа твердый раствор Мо плюс упрочняющие фазы) и равномерно распределенными по объему композиционного материала фазами Mo3Si Mo5SiB2. Время получения композиционного материала 30-35 ч, выход годного - 97%.

Пример 3 (по прототипу)

Получение композиционного материала состава Мо-15Si-5В (вес.%)

Для получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена использовали элементарные промышленные порошки молибдена, бора, кремния. Исходные порошки в количествах, соответствующих химическому составу, смешивали. Исходную порошковую смесь подвергли механическому легированию в высокоэнергетической установке для размола и смешивания (атритторе) по следующему режиму: время обработки - 40 ч, защитная атмосфера - аргон, температура в рабочей камере - 100-150°С. Затем порошки подвергли горячему компактированию: прессованию по режиму: температура - 1450°С, давление - 20 МПа, время - 3 мин, с последующей штамповкой при температуре 1500°С и термообработкой в вакууме при 1600°С в течение 2 ч. Относительная плотность полученного материала составила 0,99, σ1200в=350-380 МПа, при заданном химическом составе (основа твердый р-р Мо плюс упрочняющие фазы) и неравномерно распределенными по объему композиционного материала фазами Mo3Si, Mo5SiB2. Время получения композиционного материала около 70 ч, выход годного - 85%.

Таким образом, предложенный способ позволяет получать композиционные материалы на основе интерметаллида молибдена с высоким уровнем прочностных свойств, заданным химическим составом и высоким уровнем выхода годного, при этом сокращая время получения композиционного материала. Применение предлагаемого способа позволит снизить материальные и энергетические затраты, а следовательно, себестоимость продукции, в частности лопаток ГТД и ГТУ нового поколения.

Способ получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена, включающий смешивание порошков молибдена, бора и кремния, механическое легирование смеси в защитной атмосфере и последующее горячее компактирование порошковой смеси, отличающийся тем, что порошок кремния получают путем размола металлического кремния в два этапа, при этом на первом этапе металлический кремний размалывают до частиц размером около 100 мкм, а затем до размера менее 40 мкм, механическое легирование осуществляют при температурах 40-50°С, в качестве защитной атмосферы используют рабочую жидкость, а горячее компактирование порошковой смеси осуществляют методом экструзии при температуре 1100-1200°С с коэффициентом вытяжки не менее 1:6.



 

Похожие патенты:

Изобретение относится к композиции металлических сплавов, а именно к износо-, эрозионно- и химически стойкому материалу на основе вольфрама, легированному углеродом, причем углерод в пересчете на полный вес материала составляет от 0.01 вес.% до 0.97 вес.%.
Изобретение относится к порошковой металлургии, в частности к композиционным материалам для металлокерамических спаев. .
Изобретение относится к металлургии и может быть использовано в качестве материалов для изготовления обшивки летательных аппаратов. .
Изобретение относится к металлургии и может быть использовано для изготовления оснастки и инструмента металлообрабатывающей промышленности, деталей оборудования нефтяной и стекольной промышленности.
Изобретение относится к металлургии и может быть использовано в качестве материалов вставок критических сечений сопел, деталей ракет, обшивки летательных аппаратов.
Сплав // 2335563
Изобретение относится к области металлургии и касается составов сплавов, которые могут быть использованы для изготовления деталей технологического оборудования производства пластмасс.
Изобретение относится к области металлургии, в частности к составам лигатур, используемых в производстве сплавов на основе титана. .

Изобретение относится к сплавам для электронной техники и приборостроения, в частности для термоэмиттеров поверхностно-ионизационных детекторов обнаружения и количественного определения содержания органических соединений - аминов, гидразинов и их производных.
Изобретение относится к области металлургии и касается составов сплавов на основе молибдена, которые могут быль использованы в энергетическом машиностроении. .
Изобретение относится к области металлургии и касается составов сплавов на основе молибдена, используемых в качестве материалов вставок критических сечений сопел, деталей ракет и реакторов, оснастки и инструмента металлообрабатывающей промышленности, деталей оборудования нефтяной и стекольной промышленности, деталей радиотехники и электронной техники.
Изобретение относится к области порошковой металлургии, а именно к способу получения металлических композиционных материалов с матрицей из магния или его сплавов, армированной тугоплавкими наполнителями.
Изобретение относится к порошковой металлургии, в частности к способам получения композиционных материалов на основе карбосилицида титана. .
Изобретение относится к получению высокопористых материалов. .

Изобретение относится к порошковой металлургии, а именно к получению пористого титана. .

Изобретение относится к порошковой металлургии, в частности к получению твердого самосмазывающегося материала. .
Изобретение относится к порошковой металлургии, в частности к композиционным спеченным материалам. .

Изобретение относится к способу производства жидко-твердой металлической композиции и устройству для реализации этого способа. .
Изобретение относится к области металлургии, а именно к получению жаропрочных никелевых сплавов, и может быть использовано для изготовления сварных корпусов, кожухов высоконагруженных деталей авиационных газотурбинных двигателей.
Изобретение относится к порошковой металлургии, в частности к получению дисперсноупрочненных материалов. .
Изобретение относится к порошковой металлургии, в частности к изготовлению порошковых металлокерамических материалов для электрических контактов, для электроконтактов, включающий приготовление шихты путем смешения готовых компонентов, холодное брикетирование, спекание, допрессовку и отжиг, отличающийся тем, что готовят шихту, содержащую порошки меди и кадмия с раствором термически нестабильной соли кадмия, сушат и термообрабатывают ее при температуре 300-500°С.

Изобретение относится к электрометаллургии и может быть использовано для полунепрерывного прессования расходуемых электродов из шихтовых материалов титановых сплавов и, в частности, для очистки внутренних поверхностей тел вращения.

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов на основе интерметаллида молибдена

Наверх