Устройство поперечной емкостной компенсации

Изобретение относится к электроэнергетике, в частности к устройствам поперечной емкостной компенсации в тяговой сети переменного тока системы 25 кВ. Устройство поперечной емкостной компенсации в тяговой сети переменного тока 25 кВ содержит однофазную конденсаторную батарею, подключенную к шинам через первый выключатель с приводом, реактор для недопущения резонансных явлений, демпфирующий резистор с шунтирующим его тиристорным ключом и вторым выключателем с приводом. Снижение перенапряжений осуществляется за счет увеличения значения демпфирующего резистора и шунтирования его тока. Технический результат заключается в повышении надежности устройства. 2 ил.

 

Изобретение относится к электроэнергетике, в частности к устройствам поперечной емкостной компенсации в тяговой сети переменного тока системы 25 кВ.

Известно устройство поперечной емкостной компенсации в тяговой сети переменного тока 25 кВ [1, рис.9 - прототип], содержащее однофазную конденсаторную батарею, подключенную к шинам через первый выключатель с приводом, реактор для ограничения резонансных явлений, демпфирующий резистор, зашунтированный вторым выключателем с приводом и подключенный одним выводом к реактору, а другим выводом через трансформатор тока к земле, кнопки включения и отключения устройства.

Недостаток устройства состоит в том, что при включении КУ демпфирующий резистор не обеспечивает эффективное снижение перенапряжений на конденсаторах. В частности, перенапряжения на конденсаторах снижаются до 1, 4 от номинального напряжения при самых неблагоприятных условиях момента включения [2, стр.120] и до 1, 2 от номинального напряжения - в большинстве случаев [1]. При таких перенапряжениях надежность конденсаторов резко снижается.

Известны устройства [3, 4], снижающие перенапряжения при включении КУ, однако эффективность их также недостаточна для обеспечения надежной работы конденсаторов.

Цель изобретения - повысить надежность КУ путем снижения перенапряжения на конденсаторах при включении КУ.

Поставленная цель достигается тем, что в устройство поперечной емкостной компенсации, содержащее однофазную конденсаторную батарею, подключенную к шинам питания через первый выключатель с приводом, реактор для ограничения резонансных явлений, демпфирующий резистор, зашунтированный вторым выключателем с приводом и подключенный одним выводом к реактору, а другим выводом через трансформатор тока к земле, кнопки включения и отключения устройства, введены тиристорный двунаправленный ключ с его блоком управления, два усилителя для включения первого и второго выключателей, два RS-триггера, датчик прохождения тока через нуль, два синхронизатора положительных и отрицательных полупериодов тока, счетчик импульсов, элемент И, причем тиристорный ключ подключен параллельно демпфирующему резистору, два входа блока управления соединены соответственно с выходами синхронизаторов положительных и отрицательных полупериодов, а его третий вход соединен с выходом элемента И, вторичная обмотка трансформатора тока подключена к входам синхронизаторов положительных и отрицательных полупериодов тока и к входу датчика прохождения тока через нуль, выход которого подключен к первому входу счетчика импульсов и к первому входу элемента И, кнопки Пуск и Стоп подключены соответственно к входам S и R первого RS триггера, прямой выход которого через первый усилитель соединен с приводом первого управляемого выключателя, а инверсный выход соединен с R-входом второго RS-триггера и вторым входом счетчика импульсов, выход счетчика импульсов подключен к S-входу второго RS-триггера, выход которого соединен со вторым входом элемента И и через второй усилитель с приводом второго управляемого выключателя.

Такое выполнение схемы обеспечивает практическое исключение перенапряжений на конденсаторах при включении КУ по двум причинам:

1. На первом этапе КУ включается через демпфирующий резистор, значение которого в этой схеме можно увеличить до 70…90 Ом (в существующих схемах этот резистор имеет значение, близкое к 50 Ом [1, 2]). Как показали исследования, в этом случае практически исключаются перенапряжения на первом этапе включения.

2. На втором этапе включения с помощью тиристорного ключа демпфирующий резистор шунтируется в момент прохождения тока через нуль (и это - главное в изобретении). В этом случае процесс включения КУ происходит практически без перенапряжений (см. фиг.2).

На фиг.1 приведена структурная схема устройства.

Устройство содержит первый управляемый выключатель 1 с приводом, конденсатор 2 для компенсации реактивной мощности, реактор 3, демпфирующий резистор 4, датчик тока 5, второй управляемый выключатель 6 с приводом, тиристорный двунаправленный ключ 7, первый RS-триггер 8, усилитель 9, второй RS-триггер 10, второй усилитель 11, блок 12 управления тиристорным двунаправленным ключом, датчик 13 прохождения тока через нуль, счетчик 14 импульсов, элемент И 15, синхронизатор 16 положительных полупериодов тока, синхронизатор 17 отрицательных полупериодов тока, кнопка 18 Пуск и кнопка 19 Стоп.

Устройство работает следующим образом.

В исходном состоянии перед включением установки первый RS-триггер 8 находится в нулевом (сброшенном) состоянии: напряжение на его прямом выходе имеет низкий потенциал, т.е. на его прямом выходе сигнал равен логическому нулю, а напряжение на инверсном выходе имеет высокий положительный потенциал, т.е. сигнал на инверсном выходе равен логической 1. Этот сигнал высокого уровня устанавливает и второй RS-триггер 10 в нулевое (сброшенное) состояние. Сигналы на входах усилителей 9 и 11 управления выключателями 1 и 6 отсутствуют и выключатели 1 и 6 находятся в выключенном состоянии. Счетчик 14 также находится в нулевом состоянии, т.е. сигнал на его выходе равен нулю.

При подаче единичного сигнала от кнопки Пуск 18 или от системы автоматического управления на вход S первого RS-триггера 8 этот триггер переходит из нулевого состояния в единичное состояние. На его прямом выходе появляется сигнал 1, который через усилитель 9 включает первый выключатель 1. Сигнал на инверсном выходе первого RS-триггера становится равным нулю, т.е. восстанавливающий сигнал с входа R второго RS-триггера 10 снимается, но он по-прежнему остается в нулевом состоянии. Одновременно снимается и сигнал обнуления с входа счетчика 14 и разрешается его работа в счетном режиме.

После включения выключателя 1 начинается переходный процесс в силовой цепи, состоящей из конденсатора 2, индуктивного реактора 3 и демпфирующего резистора 4, в течение которого конденсатор 2 заряжается практически до своего номинального напряжения, превосходящего амплитудное значение питающего напряжения примерно в 1,1 раза. Демпфирующий резистор 4 ограничивает в переходном режиме амплитуду тока и амплитуду напряжения на конденсаторе 2. После того как конденсатор 2 зарядится до указанного выше напряжения, а это происходит, как показали исследования, через два полных полупериода питающего напряжения, демпфирующий резистор больше не требуется и его следует зашунтировать, обеспечив штатный режим установки компенсации реактивной мощности. Чтобы не вызвать больших перенапряжений на конденсаторе 2, шунтирование демпфирующего резистора, как показали исследования, следует производить в момент прохождения тока через нуль.

Момент прохождения тока через нуль определяет датчик 13 перехода тока через нуль. На выходе датчика 13 в момент прохождения тока через нуль появляется кратковременный единичный сигнал, который подается на вход счетчика импульсов 14. Как только счетчик импульсов отсчитает три импульса тока, на выходе счетчика появляется единичный сигнал. Количество импульсов перехода через нуль выбрано равным трем по следующим соображениям. Поскольку выключатель 1 включается несинхронно и может включиться при любой начальной фазе питающего напряжения, то первый переход через нуль возможен при очень малой длительности первой неполной полуволны тока.

Чтобы две полуволны были полные, первая из них не учитывается и счетчик 14 импульсов настраивается на три импульса. Как только с датчика 13 прохождения тока через нуль поступит третий импульс, на выходе счетчика 14 появится единичный сигнал, который устанавливает второй RS-триггер 10 в единичное состояние и на первом входе элемента И 15 появляется единичный сигнал. На втором входе этого элемента И также присутствует единичный сигнал с выхода датчика 13 прохождения тока через нуль. С выхода элемента И 15 единичный логический сигнал поступает на первый вход блока управления 12 тиристорным двунаправленным ключом. Блок управления 12 подает управляющий сигнал на тот тиристор, анод которого имеет положительный потенциал по отношению к катоду. Это обеспечивается сигналами, поступающими с синхронизаторов 16 и 17 положительной и отрицательной полярностей.

Теоретически в момент прохождения тока через нуль напряжение на демпфирующем резисторе будет равно нулю, но практически импульс на выходе датчика 13 имеет определенную длительность. Он начинается за несколько микросекунд до момента прохождения тока через нуль и заканчивается через несколько микросекунд после прохождения тока через нуль. Это обеспечивает надежное включение тиристоров в первый момент начала увеличения тока. При следующем прохождении тока через нуль включается другой тиристор. Далее процесс повторяется и демпфирующий резистор шунтируется двунаправленным тиристорным ключом каждый раз при прохождении тока через нуль. Одновременно с первым включением тиристорного ключа единичный сигнал с выхода второго RS-триггера подается на вход второго усилителя 11, что приводит через некоторое время к включению второго механического выключателя 6. Блок-контакт второго выключателя 6 (на схеме не показан) после его включения снимает импульсы управления с тиристорного двунаправленного ключа.

Итак, система компенсации реактивной мощности включена в работу в штатном режиме и выполняет свои функции.

В качестве выключателя 6 используют быстродействующие вакуумные выключатели (контакторы) на 10 кВ. Номинальные параметры тиристорного ключа - 10 кВ и 150 А. Схемы тиристорных ключей известны (например, [5]).

Рассмотрим процесс отключения КУ.

При поступлении на вход R первого RS-триггера 8 единичного сигнала от кнопки 19 Стоп или от системы управления RS-триггер 8 переходит из единичного в нулевое состояние и выключатель 1 выключается. В качестве управляемого выключателя 1 применяют вакуумные выключатели [2], которые надежно отключают емкостные токи КУ.

На инверсном выходе первого RS-триггера 8 появляется единичный сигнал, который сбрасывает в нулевое состояние счетчик 14 и второй RS-триггер 10, после чего второй выключатель 6 также выключается.

Таким образом, схема приведена в исходное состояние и готова к новому включению КУ, после которого процессы повторятся в уже изложенной выше последовательности.

Технико-экономический эффект обеспечивается за счет повышения надежности работы оборудования КУ, и прежде всего - конденсаторов, в связи с отсутствием перенапряжений на них при включении КУ.

Источники информации

1. Серебряков А.С., Герман Л.А., Козлов В.Н. Снижение коммутационных перенапряжений в установках поперечной емкостной компенсации. Наука и техника транспорта (НТТ), №2 - 2007, М.: РГОТУПС, с.46-54.

2. Бородулин Б.М., Герман Л.А., Николаев Г.А. Конденсаторные установки электрифицированных железных дорог. - М.: Транспорт, 1983. - 183 с.

3. А.С. №838891.

4. Полезная модель №74860.

5. Дзюбин И.И. Тиристоры в электрических схемах. М.: Энергия - 1972.

Устройство поперечной емкостной компенсации, содержащее однофазную конденсаторную батарею, подключенную к шинам питания через первый выключатель с приводом, реактор для ограничения резонансных явлений, демпфирующий резистор, зашунтированный вторым выключателем с приводом и подключенный одним выводом к реактору, а другим выводом через первичную обмотку трансформатора тока к земле, кнопки включения и отключения устройства, отличающееся тем, что в него введены тиристорный двунаправленный ключ с его блоком управления, два усилителя для включения первого и второго выключателей, два RS-триггера, датчик прохождения тока через ноль, два синхронизатора положительных и отрицательных полупериодов тока, счетчик импульсов, элемент И, причем тиристорный ключ подключен параллельно демпфирующему резистору, выход блока управления соединен с входом тиристорного двунаправленного ключа, два входа блока управления соединены соответственно с выходами синхронизаторов положительных и отрицательных полупериодов, а его третий вход соединен с выходом элемента И, вторичная обмотка трансформатора тока подключена к входам синхронизаторов положительных и отрицательных полупериодов тока и к входу датчика прохождения тока через нуль, выход которого подключен к первому входу счетчика импульсов и к первому входу элемента И, кнопки «Пуск» и «Стоп» подключены соответственно к входам S и R первого RS-триггера, прямой выход которого через первый усилитель соединен с приводом первого управляемого выключателя, а инверсный выход соединен с R-входом второго RS-триггера и вторым входом счетчика импульсов, выход счетчика импульсов подключен к S-входу второго RS-триггера, выход которого соединен со вторым входом элемента И и через второй усилитель с приводом второго управляемого выключателя.



 

Похожие патенты:

Изобретение относится к электротехнике, в частности к регулированию напряжения, и может найти применение в устройствах для автоматического регулирования напряжения в контактной сети на электрифицированном железнодорожном транспорте.

Изобретение относится к системе электроснабжения электрических железных дорог, а именно, к устройствам автоматизации постов секционирования контактной сети переменного тока с установками поперечной емкостной компенсации (КУ).

Изобретение относится к способам перевода участков железных дорог, электрифицированных на постоянном токе 3,3 кВ, на переменный ток 27,5 кВ и может быть использовано при переводе всех существующих участков ж.д.

Изобретение относится к области электроснабжения электрических железных дорог переменного тока и предназначено для использования при необходимости ограничения токов короткого замыкания и регулирования напряжения на фидерах контактной сети.

Изобретение относится к электрифицированному железнодорожному транспорту. .

Изобретение относится к области электрифицированного железнодорожного транспорта и предназначено для использования при электрических расчетах тяговой сети переменного тока с двухсторонним питанием.

Изобретение относится к области электроснабжения электрифицированных железных дорог однофазного переменного тока. .

Изобретение относится к электрифицированным железным дорогам и может быть использовано в тяговых сетях переменного тока промышленного электрофицированного транспорта.

Изобретение относится к электрическим железным дорогам и предназначено для тяговых подстанций. .

Изобретение относится к устройствам для автоматического регулирования напряжения в контактной сети на электрифицированном железнодорожном транспорте

Изобретение относится к области электрифицированного железнодорожного транспорта и направлено на повышение эффективности системы электроснабжения

Изобретение относится к области электрифицированного железнодорожного транспорта и направлено на совершенствование системы учета электроэнергии в тяговых сетях

Изобретение относится к области электрифицированного железнодорожного транспорта и может найти применение в устройствах для автоматического регулирования напряжения в контактной сети

Изобретение относится к электрифицированным железным дорогам переменного тока, а именно к устройствам электроснабжения однофазных тяговых потребителей и трехфазных районных нагрузок

Изобретение относится к электрифицированным железным дорогам переменного тока и направлено на увеличение пропускной способности участка железной дороги

Изобретение относится к области электротехники и может быть использовано в городских электрических сетях коммунального хозяйства и городского электрифицированного транспорта. Технический результат - снижение потерь в объединенной системе городского электроснабжения, увеличение срока службы трансформаторных подстанций и электрооборудования на транспорте и улучшение условий для управления городским электрифицированным транспортом, повышение комфортности пассажирских перевозок. Способ направленного обмена энергией между коммунальными сетями и транспортными сетями городского электрифицированного транспорта заключается в том, что на участках с повышенным (пониженным) напряжением в транспортной сети механические переключатели отпаек на высокой стороне главных трансформаторов коммунальных подстанций устанавливают на пониженное (повышенное) выходное напряжение, заставляя тем самым стабилизаторы напряжения на высокой или на низкой стороне коммунальных трансформаторных подстанций работать в режиме вольтоприбавления (вольтовычитания), потребляя энергию из транспортной сети (отдавая энергию в транспортную сеть) через инверторы напряжения и вольтодобавочные трансформаторы. Степень потребления или отдачи электрической энергии обеспечивается соответствующей установкой уровня понижения или повышения выходного напряжения у коммунальных подстанций. 1 ил.

Способ подключения тяговых трансформаторов в системе переменного тока 25 кВ относится к области электрифицированных железных дорог и может быть использован для питания как тяговой, так и нетяговой нагрузки. Способ подключения тяговых трансформаторов в системе переменного тока 25 кВ заключается, по крайней мере, в двухразовом изменении порядка подключения вводов обмоток тягового трансформатора каждой тяговой подстанции в зависимости от износа изоляции обмоток тягового трансформатора в течение полного срока его службы. Первый раз переключение обмоток вводов тягового трансформатора осуществляют при достижении износа изоляции наиболее изношенных обмоток в диапазоне 0,30-0,40, второй раз - при достижении износа изоляции наиболее изношенных обмоток в диапазоне 0,55-0,70. При этом тяговую обмотку с наибольшим износом подключают к нейтральной вставке контактной сети, обмотку с наименьшим износом изоляции к плечу питания тяговой подстанции. Технический результат заключается в увеличении срока службы тягового трансформатора. 2 ил., 3 табл.

Изобретение направлено на обеспечение электроснабжения тяговых потребителей. Предложенная система содержит реле направления мощности, расположенные на тяговых подстанциях и своими выходами соединенные с блоками управления выключателями, а входами - с блоками определения тока плеча питания тяговых подстанций и трансформаторами напряжения распределительных устройств 27,5 кВ. Каждый трансформатор напряжения фидеров контактной сети тяговой подстанции одним выводом первичной обмотки подключен к фидеру контактной сети тяговой подстанции, а выводами вторичной обмотки - к блоку сравнения напряжений, эти трансформаторы напряжения соединяется только с одним из фидеров контактной сети каждого плеча питания тяговых подстанций, смежные блоки управления выключателями каждых межподстанционных зон соединены друг с другом посредством каналов связи устройств управления выключателями, блоки сравнения напряжений соединены с блоками управления выключателями, блоки управления выключателями связаны посредством каналов связи с устройствами управления выключателями, которые также связаны через каналы связи с выключателями дополнительных пунктов параллельного соединения, блоки определения тока плеча питания тяговых подстанций соединены своими входами с трансформаторами тока фидеров контактной сети тяговых подстанций, дополнительные пункты параллельного соединения с выключателями подключены к контактным подвескам соседних путей вблизи мест подключения фидеров распределительных устройств 27,5 кВ к контактным подвескам контактной сети. Технический результат заключается в повышении качества электроэнергии в питающей энергосистеме. 2 ил.

Изобретение относится к подаче электроэнергии к электрическим сетям, контактирующим с токоприемниками транспортных средств. Предложен способ управления системой электроснабжения железных дорог, которая включает в себя датчики электрических и неэлектрических величин, локальные контроллеры исполнительных устройств и управляющие контроллеры, содержащие вычислительные средства. Управляющие контроллеры содержат средства прогнозирования изменений параметров режима и средства обучения на основе оперативной оценки результатов управления и разделены по функциональному назначению. При этом управляющие контроллеры, локальные контроллеры исполнительных устройств, центр управления и блок данных оценивания состояния электрической сети подключены по своим протоколам к среде обмена данными, которая содержит обновляемую виртуальную модель электрической сети с изменяемой зоной ответственности на основе заданной чувствительности действий исполнительных устройств к параметрам режима. Через среду обмена данными осуществляется координация управляющих и локальных контроллеров между собой. Технический результат заключается в повышении эффективности и расширении функциональных возможностей управления системой электроснабжения железных дорог. 3 ил.
Наверх