Способ электролитического осаждения сплава железо-титан-кобальт

Изобретение относится к области электролитического осаждения твердых износостойких покрытий, применяемых для восстановления и упрочнения поверхностей стальных деталей. Способ включает осаждение сплава на переменном асимметричном токе с коэффициентом асимметрии 1,2-6 и частотой тока 50 Гц из электролита, содержащего, г/л: хлористое железо 350-400, титан щавелевокислый 15-25, кобальт хлористый 10-15 и соляную кислоту 0,5-1,5, при этом осаждение ведут в интервале катодных плотностей тока 15-40 А/дм2 при температуре электролита 20-40°С. Технический результат: микротвердость покрытия составляет 9200 МПа, а коэффициент трения 0,02. 1 табл.

 

Изобретение относится к области электролитического осаждения твердых, износостойких покрытий, в частности железо-титан-кобальтовых покрытий, применяемых для восстановления и упрочнения поверхностей стальных деталей.

Известен способ электролитического осаждения сплава железо-кобальт из электролита, содержащего: 350-400 г/л хлористого железа, 5-50 г/л кобальта хлористого и 0,5-2,0 г/л соляной кислоты (патент №2230836, МПК С25В 3/56, 5/18. Способ электролитического осаждения сплава железо-кобальт). Получаемые покрытия имеют низкий коэффициент трения, вследствие чего повышается износостойкость покрытия, и высокую прочность сцепления с основой. Недостатком является недостаточная микротвердость покрытия.

Известен способ электролитического осаждения сплава железо-титан из электролита, содержащего 350-400 г/л хлористого железа, 15-25 г/л титана щавелевокислого и 0,5-1,5 г/л соляной кислоты (патент №2230139, МПК С23В 5/04. Способ электролитического осаждения сплава железо-титан). Данный способ осаждения обеспечивает высокую микротвердость и прочность сцепления с основой. Недостатком данного способа является высокий коэффициент трения, из-за чего снижается износостойкость.

Для получения покрытия с высокой прочностью сцепления с основой, высокой микротвердостью и низким коэффициентом трения предлагается способ электролитического осаждения сплава железо-титан-кобальт из электролита, содержащего, г/л:

Хлористое железо 350-400
Титан щавелевокислый 15-25
Кобальт хлористый 10-15
Соляная кислота 0,5-1,5

Процесс осаждения ведут на переменном асимметричном токе с частотой 50 Гц, начиная с коэффициента асимметрии 1,2 и повышая до 6, катодной плотности тока 15-40 А/дм2, температуре электролита 20-40°С. В химический состав покрытия входит: кобальт - до 2%, титан - до 3%, остальное - железо. Кислотность электролита рН 0,8-1,2. Данный процесс экономически эффективен, т.к. осаждение происходит при высоких катодных плотностях тока и низких температурах электролита, что обеспечивает высокую скорость осаждения покрытий. Железо дает наибольший выход по току и играет роль матрицы. Титан обеспечивает высокую микротвердость и прочность сцепления с основным металлом. Кобальт играет роль сухой смазки и обеспечивает низкий коэффициент трения.

Электролит получают соединением водных растворов хлористого железа, титана щавелевокислого и кобальта хлористого.

Концентрация хлористого железа находится в пределах 350-400 г/л. Нижний предел показывает зону минимальной вязкости. Верхний предел показывает зону максимальной электропроводности (Швецов А.Н. Основы восстановления деталей осталиванием. Омск, 1973, с.77-79).

Количество титана щавелевокислого находится в интервале 15-25 г/л. Ниже 15 г/л применение титана щавелевокислого нецелесообразно, т.к. получаемые покрытия по микротвердости близки к покрытиям твердым железом. Выше 25 г/л применение титана щавелевокислого приводит к образованию окислов титана, что резко снижает качество покрытия и его микротвердость. Наиболее оптимальным является содержание титана щавелевокислого 20 г/л.

Содержание кобальта хлористого находится в интервале 10-15 г/л. Ниже 10 г/л применение хлористого кобальта нецелесообразно, т.к. получаемое покрытие по физико-механическим свойствам близко к покрытию твердым железом. Выше концентрации 15 г/л применение хлористого кобальта приводит к ухудшению физико-механических свойств покрытия, резко увеличивается хрупкость, что отрицательно сказывается на износостойкости покрытия.

Содержание соляной кислоты находится в пределах 0,5-1,5 г/л. Верхний предел установлен из экономических соображений, электроосаждение железа на катоде происходит с одновременным разряжением водорода. С повышением содержания соляной кислоты резко увеличивается количество разряжающегося водорода, и падает выход по току. Нижний предел выбран по качественным характеристикам структур электролитического железа. При содержании соляной кислоты меньше 0,5 г/л происходит сильное защелачивание прикатодного слоя. Гидроокись, образующаяся в прикатодном слое, включается в покрытия и этим ухудшает их структуру.

Температурный интервал находится в пределах 20-40°С. Нижний предел ограничен диффузионными свойствами электролита. Движение ионов замедленное, и скорость осаждения покрытия низкая. Выше 40°С использование электролита невыгодно с экономической точки зрения. Качественного изменения покрытия не происходит, однако увеличиваются затраты на подогрев электролита.

Катодная плотность тока находится в пределах 15-40 А/дм2. Ниже 15 А/дм2 плотность тока использовать нецелесообразно, т.к. процесс электролиза имеет низкую скорость осаждения покрытия. При катодной плотности тока выше 40 А/дм2 происходит сильное дендритообразование, и резко снижается выход по току.

Начало осаждения покрытия происходит начиная с коэффициента асимметрии β=1,2, который обеспечивает высокую сцепляемость покрытия с основой Gсц=300 МПа. Если коэффициент асимметрии ниже 1,2, процесс осаждения не происходит. В процессе электроосаждения коэффициент асимметрии постепенно повышают до β=6, который характеризуется высокой и стабильной скоростью осаждения покрытия. Дальнейшее повышение коэффициента асимметрии не рекомендуется, т.к. с дальнейшим снижением анодной составляющей процесс переходит на режим, близкий к постоянному току. Благодаря разным значениям коэффициента асимметрии можно получать покрытия с различными физико-механическими свойствами.

Физико-механические свойства покрытий в зависимости от коэффициента асимметрии.

На основе проведенных испытаний оптимальными условиями способа электроосаждения сплава железо-титан-кобальт являются условия, приведенные в примере.

Электролит состоит из следующих компонентов в количестве, г/л:

Хлористое железо 350
Титан щавелевокислый 20
Кобальт хлористый 15
Соляная кислота 1,0

Процесс электролитического осаждения покрытия ведут при температуре 30°С и катодной плотности тока 30 А/дм2. Анодом служит малоуглеродистая сталь. Предварительно деталь подвергается обезжириванию венской известью и анодной обработке в растворе 30%-ной серной кислоты. Процесс осаждения начинают при β=1,2 и постепенно в течение 3-5 минут повышают до β=6. Покрытие имеет Gcц=300 МПа, микротвердость Нµ=9200 МПа, скорость осаждения 0,25 мм/ч и включает в себя: кобальт - до 2%, титан - до 3%, остальное - железо.

Предлагаемый способ имеет высокую производительность за счет применения переменного асимметричного тока. Он экономически эффективен, т.к. осаждение покрытия происходит при высокой катодной плотности тока и имеет высокую скорость осаждения покрытия. Покрытия, полученные предлагаемым способом, обладают высокой микротвердостью и износостойкостью и низким коэффициентом трения, что позволяет их использовать в народном хозяйстве для восстановления и упрочнения поверхностей стальных деталей машин.

Способ электролитического осаждения сплава железо-титан-кобальт на переменном асимметричном токе с коэффициентом асимметрии 1,2-6 и частотой тока 50 Гц из электролита, содержащего хлористое железо, титан щавелевокислый, соляную кислоту, отличающийся тем, что в электролит дополнительно вводят хлористый кобальт при следующем соотношении компонентов, г/л:

хлористое железо 350-400
титан щавелевокислый 15-25
кобальт хлористый 10-15
соляная кислота 0,5-1,5,

а осаждение ведут в интервале катодных плотностей тока 15-40 А/дм2 при температуре электролита 20-40°С.



 

Похожие патенты:
Изобретение относится к области электролитического осаждения твердых износостойких покрытий, применяемых для восстановления и упрочнения поверхностей стальных деталей.

Изобретение относится к области получения гальванических покрытий сплавом Co-Ni на сталях и алюминии и его сплавах и может быть использовано в машиностроении, приборостроении, авиационной промышленности и др.
Изобретение относится к области гальваностегии и может быть использовано в машиностроении. .
Изобретение относится к области гальваностегии. .

Изобретение относится к области гальваностегии и может быть использовано для получения коррозионностойких, твердых, термо- и износостойких, паяемых и свариваемых покрытий в машиностроении, приборостроении и электронной технике.
Изобретение относится к области гальванотехники. .

Изобретение относится к детали с покрытием и способу ее изготовления и может быть использовано для изготовления крепежных средств для закрепления комплектующих деталей.
Изобретение относится к области гальванотехники. .
Изобретение относится к области гальванотехники, в частности к электролитическому осаждению сплава кадмий - цинк. .
Изобретение относится к области гальваностегии, в частности, к электролитическому осаждению сплава висмут-галлий

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении и авиационной промышленности

Изобретение относится к прикладной электрохимии, в частности к электролитическому нанесению сплава цинк-никель
Изобретение относится к области электрохимии, в частности к нанесению износостойких и защитных полимерных композиционных покрытий на стальные изделия и может быть использовано для работы в узлах трения, гальванотехнике, радиоэлектронной и лакокрасочной промышленности
Изобретение относится к области электрохимии, в частности к нанесению упрочняющих, твердых, износостойких и защитных покрытий на стальные изделия и может быть использовано для работы в узлах трения, упрочнения поверхностей деталей, радиоэлектронной и лакокрасочной промышленности
Изобретение относится к области гальваностегии и может быть использовано в машиностроении для получения ровных, гладких покрытий с высокой коррозионной стойкостью
Изобретение относится к области гальванотехники и может быть использовано для нанесения композиционных гальванических градиентных покрытий на основе хрома в машиностроении и других отраслях промышленности при изготовлении или восстановлении деталей и инструментов с износостойкими антифрикционными покрытиями, в частности, для повышения стойкости деформирующих инструментов
Изобретение относится к области гальваностегии и может быть использовано в машиностроении для получения покрытий

Изобретение относится к способу нанесения покрытия из металлических сплавов с применением гальванической технологии
Изобретение относится к области электролитического осаждения твердых, износостойких покрытий, в частности железоалюминиевых покрытий, применяемых для восстановления и упрочнения поверхностей деталей
Наверх