Двутавровый горячекатаный колонный профиль

Изобретение предназначено для улучшения эксплуатационных характеристик колонных двутавровых профилей, используемых в стальных конструкциях зданий и сооружений. Двутавровый горячекатаный колонный профиль содержит две параллельные полки, соединенные друг с другом стенкой. Равноустойчивость профиля, определяющая более эффективное использование материала и повышение надежности конструкций, обеспечивается за счет того, что он выполнен с равной устойчивостью относительно главных осей Х и Y, при этом ширина полки в 29 раз больше его толщины, материалоемкость стенки составляет 20% от материалоемкости всего сечения, а высота стенки профиля регламентируется уравнением четвертой степени. 2 табл., 2 ил.

 

Предлагаемое изобретение относится к прокату колонных двутавровых профилей стальных конструкций зданий и сооружений.

Известен стальной двутавровый горячекатаный колонный профиль ГОСТ 26020-83 [1], содержащий стенку и две полки с параллельными гранями. Примем этот профиль за прототип.

Недостаток прототипа - его избыточная материалоемкость, так как главные моменты инерции Jx≠Jy и соответственно радиусы инерции iX≠iY не равны друг другу. То есть профиль не имеет равной устойчивости относительно главных осей X и Y. Отношение радиусов инерции достигает iX≠iY≈1,74.

Эффективность колонного профиля повысим выполнением его равной устойчивости относительно главных осей Х и Y. Равную устойчивость достигнем равенством главных моментов инерции Jx=Jy и соответственно равенством радиусов инерции iX=iY.

Техническая задача изобретения - снижение материалоемкости двутаврового горячекатаного колонного профиля и повышение устойчивости колонны из него.

Техническая задача решена следующим образом. Двутавровый горячекатаный колонный профиль содержит два параллельных пояса, соединенные друг с другом стенкой.

Отличие в том, что двутавровый горячекатаный колонный профиль выполнен равной устойчивости относительно главных осей X и Y. Площадь сечения профиля остается неизменной, ширина пояса в 29 раз больше его толщины.

Толщина стенки такая же, как у прототипа, а высота сечения профиля находится из уравнения четвертой степени

где АП - площадь сечения одной полки профиля;

Аcm - площадь сечения стенки профиля;

tп - толщина полки профиля;

hcm - высота стенки профиля;

b - ширина профиля;

tст - толщина стенки профиля.

На фиг.1 показано сечение нового двутаврового горячекатаного колонного профиля; на фиг.2 - расчетная схема центрально сжатой колонны.

Сечение имеет две полки 1, непрерывно соединенные друг с другом стенкой 2. Ширина нового горячекатаного профиля и равна b. Такая же ширина у каждой полки профиля. Толщина полки равна tп. Площадь сечения полки профиля оставим неизменной как у прототипа Aп=b·tп.

Новый стальной профиль, как и прототип, прокатывают на прокатном стане в горячем состоянии, но заготовку трансформируют валками стана таким образом, чтобы профиль оказался равной устойчивости, то есть главные моменты инерции должны быть равны друг другу JX=JY.

Очевидно, что у нового профиля высота h сечения должна быть меньше, чем у прототипа.

В то же самое время для профиля из малоуглеродистой стали В Ст.3 Сп.5 ГОСТ 27772-88 должно соблюдаться соотношение

где b - ширины полки; tп - толщина полки.

То есть отношение ширины полки к ее толщине должно быть менее 30 [2].

Примем это отношение b/tп=29. При таком отношении обеспечена локальная устойчивость полок нового профиля.

Толщина полки нового профиля равна tn=b/29, а ширина его

Площадь сечения полки равна

Коэффициент материалоемкости стенки обозначим К.

Моменты инерции нового профиля относительно оси X

и относительно оси У должны быть равны друг другу Jx=Jy

Главные моменты инерции должны быть равны.

Приравняем формулы (4) и (5)

Коэффициент материалоемкости стенки равен К=0,2, тогда

Получаем уравнение четвертой степени для определения высоты стенки hcm нового профиля

Решив уравнение (6), находим необходимую высоту стенки hcm нового профиля при заданной ширине b сечения. Новый профиль обладает равной устойчивостью относительно осей X и Y.

Для примера конкретной реализации используем колонный двутавр I 40 К2 (прототип). ГОСТ 26020-83. Алгоритм следующий:

1. Площадь сечения нового профиля принимаем такой же, как у прототипа А=210,96 см2.

2. Коэффициент материалоемкости стенки примем равным К=0,2.

3. Находим площадь сечения стенки нового профиля

Acm=K·A=0,2·210,96=42,192 см2.

4. Находим площадь сечения одной полки

Ап=0,5(1-К)·А=0,5(1-0,2)210,96=84,384 см2.

5. Находим толщину полки и округляем ее

6. Находим ширину полки и округляем ее

7. Находим фактическую площадь сечения полки

Aп=b·tп=49,5·1,71=84,645 см2.

8. Подставляем в уравнение (6) четвертой степени фактические значения: Ап=84,645 см2, tп=1,71 см, b=49,5 см, Аcm=42,192 см2,

9. Получаем уравнение четвертой степени

10. Решаем уравнение (6) и получаем высоту стенки нового двутаврового профиля hcm=25,898 см, при которой обеспечена его равная устойчивость относительно осей Х и Y. Высота сечения h=29,3096 см.

11. Находим толщину стенки

12. Составляем сортамент новых двутавровых профилей (табл.1).

13. Подбираем колонну из нового двутаврового колонного профиля и сравниваем ее материалоемкость с колонной из старого профиля (прототипа) по ГОСТ 26020-83.

Сопоставление колонного двутавра I 40 К2 ГОСТ 26020-83 (прототип) и нового колонного двутаврового профиля I 40 К2 Э показывает, что при одинаковой материалоемкости нового и старого профилей в результате эффективного распределения стали по сечению достигнута равная устойчивостью сечения относительно осей X и Y. В результате этого моменты инерции JX=JY и радиусы инерции iX=iY относительно осей Х и Y стали равны друг другу.

Таблица 2.
Сравнение колонного двутавра I 40 К2 ГОСТ 26020-83 и нового колонного двутаврового профиля I 40 К2 Э
Было, прототип Стало
Колонные двутавровые горячекатаные профили I 40 К2.
ГОСТ 26020-83
Новый профиль I 40 К2 Э
Площадь сечения, см2 А=210,96 210,96
Площадь полки, см2 AП=1,65·40=66 АП=84,384
Толщина стенки, см tст=1,3 tcm=1,63
Толщина полки, см tП=1,47
Ширина полки, см b=44,1
Коэффициент материалоемкости стенки Кcm=0,37 Кcm=0,2
Высота стенки hcm, см hcm=h-tП=36 hcm=25,898
Высота сечения, см h=40 h=hcm+tП,=29,31
Моменты инерции сечения, см4 JX=52400,
JY=17610
Радиусы инерции, см ix=17,26,
iy=10,0 (100%)
Максимальная гибкость колонны ℓ=700 см
Приведенная гибкость колонны
Коэффициент продольного изгиба φ φ=0,765
Коэффициент условий работы γc [1, с.9]
Несущая способность колонны, гН (m)
F=γc·φ·Ry·A
F=0,8·0,765·230·210,96=29694,7 гН (296,95 m) 100% F=0,95·0,836·230·210,96=38535,2 гH (385,35 m) 129,8%
Примечание:
Расчетная схема колонны - центрально-сжатая с шарнирным закреплением ее концов. Сталь малоуглеродистая по ГОСТ 2-7772-88 с расчетным сопротивлением Ry=230 МПа и модулем упругости Е=206000 МПа.

При этом радиус инерции нового профиля по отношению к минимальному радиусу инерции прототипа увеличился на 27,7%, что привело к благоприятному изменению коэффициента продольного изгиба φ.

Гибкости λXY также стали равны.

Несущая способность колонн равна F=γc·φ·Ry·A

Прототип - F=0,8·0,765·230·210,96=29694,7 гН (296,95 m) 100%

Новый профиль - F=0,95·0,836·230·210,96=38535,2 гH (385,35 m) 129,8%

Таким образом, несущая способность колонн из нового профиля повышена на 29,8%. Эффективность высокая.

Список литературы

1. ГОСТ 26020-83 «Двутавры стальные горячекатаные с параллельными гранями полок. Сортамент».

2. СНиП II-23-81* Стальные конструкции. - М.: Стройиздат, 1981. - 125 с.

Двутавровый горячекатаный колонный профиль, содержащий две параллельные полки, соединенные друг с другом стенкой, отличающийся тем, что он выполнен с равной устойчивостью относительно главных осей х и y, с неизменной площадью сечения, при этом ширина полки в 29 раз больше ее толщины, материалоемкость стенки составляет 20%, каждой из полок - 40% от материалоемкости всего сечения, а высота стенки профиля определена из уравнения четвертой степени

где Ап - площадь сечения одной полки профиля, см2;
Aст - площадь сечения стенки профиля, см2;
Tп - толщина полки профиля, см;
Hст - высота стенки профиля, см;
B - ширина профиля, см;
Tст - толщина стенки профиля, см.



 

Похожие патенты:

Изобретение относится к металлургии и может быть использовано при калибровке и последующей прокатке железнодорожных рельсов или других аналогичных профилей с применением опорных конусов.

Изобретение относится к черной металлургии, в частности к прокатному производству, и может быть использовано при прокатке железнодорожных рельсов. .

Изобретение относится к прокатному производству и может быть использовано при прокате рельсового профиля из нержавеющей марки стали аустенитного класса, коррозионностойкой к внешним воздействиям, для соединения концов рельсов с крестовиной стрелочного перевода по обоим окончаниям [1].

Изобретение относится к черной металлургии, в частности к прокатному производству, и может быть использовано при прокатке железнодорожных рельсов. .

Изобретение относится к сортовой прокатке и может быть реализовано при прокатке двутавровых профилей преимущественно на непрерывных станах, снабженных универсальными четырехвалковыми клетями.

Изобретение относится к прокатному производству и может быть использовано при прокатке профилей с продольными пазами типа брусьев для футеровки шаровых мельниц, характеризующихся наличием подошвы, головки и продольных пазов, симметричных относительно одной оси.

Изобретение относится к металлургии, а именно к сортопрокатному производству и может быть использовано при горячей, теплой и холодной прокатке шестигранных профилей из черных и цветных металлов, а также различных сплавов в 2-валковых калибрах любых типов станов.

Изобретение относится к прокатному производству и может быть использовано при прокатке железнодорожных рельсов. .

Изобретение относится к прокатному производству, в частности к системам калибров валков для прокатки асимметричных и симметричных профилей корытной формы, преимущественно железнодорожных двухголовых накладок.

Изобретение относится к металлургии, а именно к сортопрокатному производству, и может быть использовано при горячей, теплой и холодной прокатке шестигранных коротких прутков из черных и цветных металлов, а также различных сплавов преимущественно малотоннажных партий на одноклетьевых станах дуо

Изобретение относится к области сортовой прокатки и может быть реализовано при производстве железнодорожных рельсов на непрерывно-реверсивных рельсобалочных станах

Изобретение относится к прокатному производству и может быть использовано при прокате полосовых асимметричных профилей с клиновидными утолщениями в виде периодических выступов типа периодической лемешной полосы 142Д, преимущественно для изготовления долотообразных лемехов сельскохозяйственного назначения

Изобретение относится к прокатному производству и может быть использовано при получении стальных фасонных профилей

Изобретение предназначено для расширения сортамента профилей в сторону увеличения площади поперечного сечения стальных сортовых и фасонных профилей, получаемых путем переработки прокаткой железнодорожных рельсов, выведенных из эксплуатации. Способ включает нагрев рельсов и последующее многопроходное обжатие в валках с калибрами. Местное уменьшение сопротивления деформации рельсовой стали обеспечивается за счет того, что рельсы вначале нагревают до температуры 950-1150°С, затем подвергают локальному подогреву до температуры 1250-1290°С в местах сопряжения головки и подошвы рельса с шейкой в проходной тоннельной печи с газовыми горелками, после чего производят осадку рельса по высоте на 10-30% путем прокатки в валках диаметром 700-900 мм. Кроме того, локальному подогреву до температуры 1200-1250°С дополнительно подвергают среднюю часть шейки, а нагрев рельсов производят в безокислительной атмосфере. 2 з.п. ф-лы, 2 ил., 1 табл., 1 пр.

Изобретение предназначено для повышения выхода годных сортовых профилей и фасонных профилей, получаемых путем переработки прокаткой железнодорожных рельсов, выведенных из эксплуатации. Способ включает нагрев рельса до температуры аустенитизации и последующее многопроходное обжатие в валках с калибрами. Исключение образования дефектов типа «закат» в процессе переработки заготовок обеспечивается за счет того, что нагрев рельсов ведут до температуры 980-1250°C, в первых 2-3 проходах рельс обжимают по высоте на 10-40% в универсальных четырехвалковых калибрах, при этом между валками, обращенными к шейке рельса, устанавливают зазор, величина которого на 2-5 мм превышает толщину шейки рельса на входе в соответствующий калибр. Кроме того, обжатие шейки рельса производят в валках, на бочках которых выполнены кольцевые проточки глубиной 5-8 мм со скругленной формой профиля, с чередованием положения кольцевых проточек по проходам, расположенных на краях бочек валков и в их центрах. 1 з.п. ф-лы, 4 ил., 1 табл.

Изобретение предназначено для прокатки стальных рельсов. Способ включает изготовление рельсовой заготовки (5), содержащей участок (2) подошвы, участок (3) головки и участок (4) шейки, соединяющий участок подошвы с участком головки, чистовую прокатку рельсовой заготовки для формования стального рельса (6). Оптимизация режима обжатий разных участков заготовки, уменьшение фактора падения температуры концов рельсовой заготовки обеспечивается за счет того, что прокатку производят в многоклетьевом непрерывном тандемном чистовом стане, содержащем по меньшей мере три четырехвалковые универсальные клети (U1, U2 и U3) и по меньшей мере две двухвалковые эджерные клети (E1, E2), при этом универсальные клети содержат вертикальный валок для формования нижнего участка (2a) подошвы и вертикальный валок для формования участка (3a) головки рельса, и два профилированных горизонтальных валка для формования сторон (6a, 6b) рельса и, в частности, участка (4a, 4b) шейки рельса, причем рельсовую заготовку пропускают только один раз через чистовой стан, при этом по меньшей мере вертикальные валки во всех универсальных клетях для формования нижнего участка (2a) подошвы являются гладкими валками, и по меньшей мере одна из универсальных клетей содержит гладкий вертикальный валок для формования участка (3a) головки. Изобретение также относится к устройству для осуществления указанного способа и к изделию, изготовленному таким способом, 4 н. и 11 з.п. ф-лы, 4 ил.

Группа изобретений предназначена для прокатки угловых профилей. Клеть для прокатки угловых профилей содержит расположенные на общем основании установленные горизонтально верхний (2) и нижний (3) калиброванные валки, совместно определяющие плоскость прокатки, перпендикулярную направлению продвижения прокатываемого материала (6), и межвалковый зазор с открытыми или закрытыми калибрами, располагающийся в этой плоскости, и по меньшей мере пару установленных не горизонтально обжимных роликов (4, 5), обжимающих прокатываемый материал (6) с боков и определяющих плоскость прокатки, расположенную перпендикулярно направлению продвижения прокатываемого материала (6), причем плоскость прокатки, определяемая парой калиброванных валков (2, 3), и плоскость прокатки, определяемая по меньшей мере парой обжимных роликов (4, 5), не совпадают, а плоскость прокатки, определяемая парой обжимных роликов (4, 5), расположена в направлении движения прокатываемого материала (6) за и/или перед плоскостью прокатки калиброванных валков (2, 3). Компактный тандемный прокатный стан содержит по меньшей мере одну такую прокатную клеть, а изготовление профилей также предусматривает использование таких прокатных клетей для возможности производства изделий с расширением размерного ряда. 4 н. и 14 з.п. ф-лы, 2 ил.

Изобретение относится к обработке металлов давлением, в частности к изготовлению прокаткой рессорных полос. Осуществляют многопроходную прокатку заготовки путем обжатия и профилирования каждой половины заготовки в клетях с разными окружными скоростями рабочих валков и увеличения в ходе прокатки переднего натяжения полосы. В каждом проходе на входе в очаг деформации и выходе из очага деформации измеряют соответствующие скорости движения поверхности рессорной полосы, контактирующей с валком, вращающимся с большей скоростью. При достижении равенства указанных скоростей на входе в очаг деформации и выходе из очага деформации завершают проход на достигнутой к этому моменту величине обжатия. Следующий проход начинают с того сечения, в котором были достигнуты размеры готовой рессорной полосы в предыдущем проходе. В результате повышается качество готовой продукции и производительность. 2 ил., 1 табл.
Наверх