Способ получения наномодифицированного гальванического никелевого покрытия


 


Владельцы патента RU 2411309:

Государственное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" (ГОУ ВПО "ТГТУ") (RU)
Учреждение Российской академии наук Институт проблем химической физики (ГОУ ИПХФ РАН) (RU)

Изобретение относится к гальванотехнике, в частности к электрохимическому осаждению никелевых покрытий, и может быть использовано для получения многофункционального твердого, коррозионно-, термо-, износостойкого, а также защитно-декоративного покрытия в машиностроении. Способ получения наномодифицированного гальванического никелевого покрытия включает гальваническое осаждение никелевого покрытия, при этом в электролит вводят наноуглеродный материал с числом графеновых слоев не более 30, наружным диаметром волокон от 10 до 60 нм, длиной не менее 2 мкм и с содержанием структурированного углерода не менее 95%, в количестве 0,05-0,08 г/л, после чего электролит обрабатывают ультразвуком. Наноуглеродный материал может вводиться в электролит неочищенным от никелевого катализатора. Рекомендуемый режим обработки ультразвуком: частота 22 кГц, амплитуда 80 мкм, интенсивность звука 786 Вт/см2. Технический результат - достижение микротвердости никелевого покрытия, превосходящей микротвердости хромирования. 2 з.п. ф-лы, 1 табл.

 

Изобретение относится к гальванотехнике, в частности к электрохимическому осаждению никелевых покрытий, и может быть использовано для получения многофункционального твердого, коррозионно-, термо-, и износостойкого, а также защитно-декоративного покрытия в машиностроении.

Известен способ получения многофункционального покрытия никель-бор (см., например, патент РФ №2284379, МПК C25D 3/56, 2006 г.), включающий электрохимическое осаждение покрытия при плотности тока 0,5-5,0 А/дм2, температуре 30-69°С из электролита при рН 2,5-5,5, содержащего 250-400 г/л никеля сернокислого семиводного, 20-60 г/л никеля двухлористого шестиводного, 30-60 г/л борной кислоты, 0,01-2,0 блескообразующих добавок, при этом перед электрохимическим осаждением покрытия в электролит вводят борирующую добавку, принадлежащую к классу неорганических или органических бороводородов и их солей.

Такой способ обеспечивает получение больших толщин покрытия с сохранением заданных свойств по всей его толщине, однако при этом обладает недостаточной микротвердостью, типичной для никелевого покрытия.

Этот недостаток устранен в принятом за прототип способе получения композиционных металлоалмазных покрытий (см. патент РФ №2156838, МПК C25D 15/00, 2000 г.), согласно которому в электролит вводят очищенный ультрадисперсный алмазный порошок в количестве 2-20 г/л в виде электролитной суспензии с концентрацией ультрадисперсного алмазного порошка 8-10% с содержанием примесей не более 2% и удельной поверхностью 400-500 м2/г.

Недостатками этого способа являются:

- высокая себестоимость электролита хромирования;

- большие затраты на электроэнергию вследствие низкого выхода хрома по току;

- высокая токсичность хромовых электролитов;

- низкая рассеивающая способность хромовых электролитов, что не позволяет наносить хромовые покрытия на детали сложной формы.

Задачами, на решение которых направлено предлагаемое изобретение, являются:

1. снижение себестоимости наномодифицированных гальванических покрытий,

2. получение никелевых покрытий с высокой микротвердостью,

3. получение беспористых никелевых покрытий,

4. увеличение скорости осаждения никелевого покрытия.

Технический результат заключается в достижении микротвердости никелевого покрытия, превосходящей микротвердость хромирования, что позволит заменять хромирование никелированием.

Указанный технический результат достигается тем, что согласно способу получения наномодифицированного гальванического никелевого покрытия, включающему гальваническое осаждение никелевого покрытия, в электролит вводят наноуглеродный материал с числом графеновых слоев не более 30, наружным диаметром волокон от 10 до 60 нм, длиной не менее 2 мкм и с содержанием структурированного углерода не менее 95%, в количестве 0,05-0,08 г/л, после чего электролит обрабатывают ультразвуком.

Наноуглеродный материал вводят в электролит неочищенным от никелевого катализатора.

Обработку электролита ультразвуком проводят с частотой 22 кГц, амплитудой 80 мкм и интенсивностью звука 786 Вт/см2.

Введение в электролит наноуглеродного материала с числом графеновых слоев не более 30, наружным диаметром волокон от 10 до 60 нм, длиной не менее 2 мкм и с содержанием структурированного углерода не менее 95%, в количестве 0,05-0,08 г/л с последующей обработкой электролита ультразвуком обеспечивает повышение достижения микротвердости покрытия, не уступающего описанному в прототипе металлоалмазному покрытию, но при этом за счет введения наноматериала в гораздо меньшем количестве, чем алмазного порошка, достигается снижение себестоимости покрытия. Увеличение микротвердости покрытия происходит за счет совершенствования структуры никелевого покрытия в результате воздействия на него наноуглеродных трубок в процессе осаждения. Одновременно увеличивается скорость осаждения и исключается пористость покрытия. Обработка электролита ультразвуком обеспечивает уменьшение размеров агломератов из углеродных наноматериалов и их более равномерное распределение в электролите.

Введение наноуглеродного материала в электролит неочищенным от никелевого катализатора обеспечивает дополнительное снижение затрат на нанесение гальванических покрытий. В настоящее время описанный выше наноуглеродный материал получают методом каталитического пиролиза, причем в качестве катализатора в основном используются катализаторы на основе оксида никеля. После проведения синтеза наноуглеродного материала его очищают от катализатора промывкой в азотной кислоте, после чего материал промывают и сушат. Увеличение скорости осаждения происходит вследствие участия в процессе никелевого катализатора, находящегося на концах наноуглеродных трубок. Поскольку микропримеси никельсодержащего материала не могут отрицательно влиять на процесс осаждения никелевого покрытия, в настоящем изобретении предусмотрено применение полупродукта - неочищенного от катализатора углеродного наноматериала, что позволяет снизить затраты на модификатор не менее чем на 5%.

Проведение обработки электролита ультразвуком с частотой 22 кГц амплитудой 80 мкм, интенсивностью звука 786 Вт/см2 обеспечивает не только разрушение агломератов в растворе, но и обеспечивает равномерность распределения наноматериала в растворе, что обеспечивает получение беспористого покрытия.

Подготовку поверхности деталей перед нанесением гальванического покрытия проводят стандартными способами с использованием известных растворов.

Для пояснения изобретения описан пример осуществления способа.

Пример.

Электрохимическое осаждение покрытия на предварительно подготовленную поверхность основы из материала сталь Ст3 проводят в электролите, содержащем (в г/л):

Сернокислый семиводный никель 254,6

Хлористый шестиводный никель 67,5

Борную кислоту 32,33

В качестве углеродного наноматериала использовали углеродный наноматериал «Таунит», изготовитель ООО «НаноТехЦентр» г.Тамбов, неочищенный от никелевого катализатора в количестве 0,07 г/л со следующими характеристиками:

Характеристика Значение
Наружный диаметр, нм 15-40
Внутренний диаметр, нм 3-8
Длина, µм 2 и более
Общий объем примесей (%), аморфного углерода 0,3-0,5
Насыпная плотность, г/см3 0,4-0,5

После введения в раствор электролита наноуглеродного материала «Таунит» электролит обрабатывают на ультразвуковой установке с частотой 22 кГц, интенсивность ультразвуковой обработки: амплитуда 80 мкм, интенсивность звука 786 Вт/см2.

Процесс проводят при рН 3,5, плотности тока 4 А/дм2 и температуре 52°С.

В течение 50 мин получают покрытие средней толщиной 43 мкм.

Микротвердость измеряли на микротвердомере ПМТ-3 при нагрузке 50 г.

Пористость покрытия исследовалась по ГОСТ 9.302-88.

Полученное покрытие беспористо и достаточно равномерно распределено по поверхности детали.

Микротвердость составляет 1009 кг/мм2, тогда как наилучшее значение этого показателя для хром-алмазных покрытий, заявленных в прототипе, составляет 930 кг/мм2. Кроме того, наилучшие показатели хром-алмазных покрытий получены при концентрации в электролите ультрадисперсного алмазного порошка 22 г/л, в то время как наилучшие результаты с добавлением наноуглеродного материала «Таунит» получены при его концентрации в электролите 0,07 г/л, т.е. меньшей в 300 раз. При соизмеримой себестоимости ультрадисперсного алмазного порошка и наноуглеродного материала «Таунит» в предлагаемом способе достигается существенное снижение себестоимости наномодифицированных гальванических покрытий.

Характеристики получаемого покрытия - микротвердость и пористость - соответствуют характеристикам хромовых покрытий, а равномерность полученного покрытия значительно превосходит хромовые. Это позволяет использовать предложенный способ в машиностроении взамен процесса хромирования, который является более дорогим, высокотоксичным и имеет низкие рассеивающую способность и выход по току.

Кроме того, использование наноуглеродного материала «Таунит», неочищенного от никелевого катализатора, приводит к существенному (в 2,6 раза по сравнению с традиционным электролитом Уоттса) увеличению скорости осаждения покрытия, в результате чего повышается производительность гальванооборудования.

1. Способ получения наномодифицированного гальванического никелевого покрытия, включающий гальваническое осаждение никелевого покрытия, отличающийся тем, что в электролит вводят наноуглеродный материал с числом графеновых слоев не более 30, наружным диаметром волокон от 10 до 60 нм, длиной не менее 2 мкм и с содержанием структурированного углерода не менее 95% в количестве 0,05-0,08 г/л, после чего электролит обрабатывают ультразвуком.

2. Способ по п.1, отличающийся тем, что наноуглеродный материал вводят в электролит неочищенным от катализатора из оксида никеля.

3. Способ по п.1, отличающийся тем, что обработку электролита ультразвуком проводят с частотой 22 кГц, амплитудой 80 мкм, интенсивностью звука 786 Вт/см2.



 

Похожие патенты:
Изобретение относится к области электрохимического осаждения металлических покрытий, в частности никелевых, и может быть использовано для получения многофункционального твердого, коррозионно-, термо-, износостойкого, а также защитно-декоративного покрытия в машиностроении.

Изобретение относится к области гальванотехники, а в частности к способам получения электрохимических композиционных покрытий на основе хрома. .

Изобретение относится к области электрохимического нанесения покрытий на стальные изделия, работающие в гидросистемах и узлах трения - скольжения, в частности, к нанесению хромовых покрытий в экологически безопасных электролитах, содержащих соли трехвалентного хрома.
Изобретение относится к области гальванотехники и нанотехнологий. .

Изобретение относится к области гальванотехники. .

Изобретение относится к области гальванотехники. .

Изобретение относится к области гальванотехники и может быть использовано в машиностроении и приборостроении. .

Изобретение относится к области микродугового оксидирования. .
Изобретение относится к области электрохимического нанесения покрытий, в частности к локальному осаждению цинковых покрытий на токопроводящую поверхность деталей, например, для ремонта поврежденных цинковых покрытий.
Изобретение относится к области гальванотехники, в частности к осаждению композиционного покрытия никель-бор-оксид алюминия, и может быть использовано в различных отраслях промышленности в качестве покрытий, обладающих высокой микротвердостью
Изобретение относится к области гальванотехники и может быть использовано в различных отраслях промышленности
Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении и других отраслях промышленности для увеличения срока службы деталей в узлах машин, механизмов, а также пресс-форм, обладающих повышенной микротвердостью
Изобретение относится к гальванотехнике, в частности к нанесению хромовых покрытий
Изобретение относится к области электрохимического осаждения металлических покрытий, в частности хромовых, и может быть использовано для получения коррозионно-стойкого, твердого, термо- и износостойкого покрытия в машиностроении, электронике и других отраслях промышленности
Изобретение относится к области порошковой гальванотехники, а именно к материалам для получения композиционных гальванических покрытий, и может быть использовано для создания износостойких покрытий в условиях массового, серийного и единичного производства

Изобретение относится к гальваностегии и может быть использовано в ремонтном производстве при нанесении металлических и композиционных покрытий на цилиндрические поверхности
Изобретение относится к области нанесения химических и гальванических композиционных покрытий на основе сплава никеля

Изобретение относится к области технологии осаждения электрохимических покрытий, а именно к области технологии осаждения композиционных электрохимических покрытий (КЭП), и может найти применение для повышения износостойкости внутренних поверхностей деталей машин, приборов и инструмента
Изобретение относится к области гальванотехники
Наверх