Полая лопатка газотурбинного двигателя



Полая лопатка газотурбинного двигателя
Полая лопатка газотурбинного двигателя
Полая лопатка газотурбинного двигателя
Полая лопатка газотурбинного двигателя

 


Владельцы патента RU 2411367:

СНЕКМА (FR)

Полая лопатка газотурбинного двигателя имеет внутренний проход охлаждения, открытую полость, расположенную на свободном торце лопатки и ограниченную стенкой основания и боковой стенкой, по меньшей мере, одного выступа, проходящего между передней кромкой и задней кромкой лопатки, и, по меньшей мере, один канал охлаждения. Канал охлаждения соединяет внутренний проход охлаждения с открытой полостью и выходит в основание указанной боковой стенки выступа. Боковая стенка образует тупой угол, превышающий 90°, с упомянутой стенкой основания. В боковой стенке выполнена выемка в месте выхода указанного канала охлаждения, заканчивающаяся до верхней кромки выступа. Изобретение направлено на создание лопатки, простой в изготовлении, и с хорошо охлаждаемыми выступами, предусмотренными на ее конце. 10 з.п. ф-лы, 4 ил.

 

Изобретение относится к полой лопатке газотурбинного двигателя, в частности к полой лопатке ротора газовой турбины, типа турбины высокого давления турбореактивного двигателя.

Как показано на Фиг.1 и 2, уже известно решение, предусматривающее на свободном конце 3 полой лопатки 2 открытую полость 5 или «ванну», ограниченную стенкой основания 7, проходящей по всему концу лопатки, и боковыми стенками двух выступов 9 и 10, проходящих между передней кромкой 12 и задней кромкой 14 лопатки, при этом один из двух выступов 9 является продолжением корыта 8 лопатки, а другой выступ 10 - продолжением спинки 11 лопатки. Эти выступы являются выступами корыта или спинки лопатки.

Поверхности трения между свободным концом 3 каждой лопатки и кольцевой поверхностью картера турбины 16, который окружает эти лопатки, как это показано на Фиг.2, также ограничены выступами 9 и 10, чтобы защищать тело лопатки и, в частности, стенку основания 7. Кроме того, выступы 9 и 10 позволяют оптимизировать зазор J между свободным концом лопатки 3 и картером 16 и тем самым ограничить утечку газов из внутреннего во внешнее пространство, которая является источником аэродинамических потерь, вредно сказывающихся на КПД двигателя. Вследствие высоких температур газов, проходящих через турбину, и повышенных скоростей вращения лопаток существует необходимость охлаждать выступы 9 и 10, во избежание их разрушения в результате совместного воздействия трения и нагрева. Также были предусмотрены каналы охлаждения для соединения внутреннего прохода охлаждения 18 полой лопатки с открытой полостью 5 и соответственно подачи холодного воздуха к выступам 9 и 10.

К тому же недавние исследования показали, что отсутствие выступа 9 корыта лопатки позволяло освободиться от проблем разрушения этого выступа, гарантируя такой же хороший КПД турбины или даже лучший, чем в случае лопатки с двумя выступами, корыта и лопатки.

Однако отсутствие выступа 9 корыта лопатки обязывает улучшить охлаждение выступа 10 спинки, который не защищен больше от горячих газов выступом 9 корыта лопатки.

В лопатках с двумя выступами, описанных в патентах ЕР 0816636 B1 и EP 1270873 A2, предназначенные для охлаждения выступа спинки каналы, недостаточно охлаждают его, либо потому что они проделаны слишком далеко от этого выступа, либо потому что они открываются рядом с верхним краем выступа. В лучшем случае они охлаждают только верхний край выступа спинки.

В патенте EP 1422382 А2 представлено решение, позволяющее улучшить охлаждение выступа спинки лопатки без выступа корыта. Это решение состоит в том, чтобы проделать выемки в боковой стенке выступа спинки, которая противостоит открытой полости, и в которую ударяют горячие газы. Вышеупомянутые выемки тянутся от основания выступа спинки к его верхней кромке, и каналы охлаждения просверлены в глубине этих выемок до внутреннего прохода охлаждения лопатки. Главными недостатками этих выемок являются уменьшение прочности выступа спинки, в особенности его верхней кромки, и ограничение потока холодного воздуха, в результате чего части стенки, расположенные между этими выемками, совсем не охлаждаются (или охлаждаются очень плохо). Кроме того, судя по форме выемок, сверление каналов охлаждения может быть сложной операцией, требующей специального оборудования.

Задачей изобретения является разработка полой лопатки газотурбинного двигателя, простой в изготовлении, и с хорошо охлаждаемыми выступами, предусмотренными на ее конце.

Для решения этой задачи предлагается полая лопатка газотурбинного двигателя, содержащая внутренний проход охлаждения, открытую полость, расположенную на свободном конце лопатки и ограниченную стенкой основания и боковой стенкой по меньшей мере одного выступа, проходящего между передней кромкой и задней кромкой лопатки, при этом лопатка дополнительно содержит по меньшей мере один канал охлаждения, который соединяет вышеназванный внутренний проход охлаждения с упомянутой открытой полостью, отличающаяся тем, что указанный канал охлаждения выходит рядом с зоной соединения стенки основания и боковой стенки выступа, в основание выступа, при этом боковая стенка выступа образует тупой угол, превышающий 90°, с упомянутой стенкой основания.

Предпочтительно, чтобы, с одной стороны, обеспечивался наклон боковой стенки выступа по отношению к направлению, перпендикулярному стенке основания, рассматриваемому далее как вертикальное направление, и, с другой стороны, чтобы каналы охлаждения были выполнены на основании выступа.

Такое расположение позволяет выходящему из каналов холодному воздуху следовать вдоль стенки выступа и создавать, таким образом, на этой стенке защитный слой, который предохраняет выступ от горячих газов и охлаждает его.

Кроме того, наклон боковой стенки выступа облегчает процедуру пробивки каналов охлаждения: легко проделывать эти каналы, даже следуя вертикальному направлению, так как пространство выше зоны соединения между стенкой основания и боковой стенкой достаточно освобождено, чтобы обеспечить доступ инструмента (например, электрода) или лазерного луча. Напротив, пробивка канала с использованием боковой стенки выступа, образующей острый или прямой угол со стенкой основания, является длительной и требующей высокой точности операцией, так как надо следить за тем, чтобы не повредить боковую стенку, и чтобы не проделать канал слишком далеко от этой стенки.

Согласно одному из вариантов осуществления изобретения на корыте лопатки выступ, являющийся продолжением корыта лопатки, отсутствует или выступ проходит только по части корыта лопатки. В этом случае торец лопатки представляет собой выступ, проходящий между передней кромкой и задней кромкой лопатки, и находящийся в глубине по отношению к корыту лопатки: имеется в виду, обычно, выступ стенки лопатки, являющийся продолжающим спинки лопатки, но может быть использован и промежуточный выступ, расположенный между корытом и спинкой торца лопатки.

Изобретение и его преимущества будут лучше понятны из подробного описания примера изготовления лопатки согласно изобретению, приводимого со ссылками на прилагаемые чертежи, в числе которых:

Фиг.1 изображает вид в изометрии свободного торца лопатки, показывающий выступы корыта и спинки лопатки;

Фиг.2 - поперечное сечение в плоскости II-II торца лопатки с фиг.1 в районе, свободном от канала охлаждения;

Фиг.3 - поперечное сечение, аналогичное представленному на фиг.2, свободного торца лопатки согласно изобретению, которое представляет наличие выступа спинки лопатки и отсутствие выступа на корыте лопатки. Это сечение осуществлено на уровне канала охлаждения; и

Фиг.4 - вид в изометрии, по стрелке IV фиг.3, показывающий стенку выступа спинки лопатки.

Со ссылкой на фиг.3 и 4, ниже будет описан пример выполнения лопатки 102 согласно изобретению. Части лопатки 102, аналогичные частям лопатки 2 фиг.1 и 2, обозначены теми же цифровыми ссылками, увеличенными на 100.

Согласно примеру по фиг.3 и 4, на свободном торце 103 лопатки 102 в представленной области присутствует выступ спинки 110, но нет никакого выступа на корыте лопатки.

Боковая стенка 120 выступа спинки образует вместе со стенкой основания 107 открытую полость 105. Вследствие отсутствия выступа на корыте лопатки боковая стенка 120 атакуется горячими газами, пересекающими турбину и увлекающими за собой лопатки 102. По отношению к лопаткам эти горячие газы циркулирует согласно стрелке F. Боковая стенка 120 подвергается, таким образом, воздействию очень высоких температур и должна эффективно охлаждаться.

С этой целью каналы охлаждения 122 соединяют проход внутреннего охлаждения 118 лопатки 102 с полостью 105 и выходят в основание выступа 110, на уровне зоны соединения между этим выступом и стенкой основания 107 полости 105. В примере боковая стенка 120 и стенка основания 107 имеют плоские поперечные сечения, поэтому в зоне соединения между этими стенками существует ребро 130. Однако в этой зоне соединения может быть предусмотрено закругление.

Каналы 122 включают в себя две части: регулировочную часть, образованную отверстием 124, и рассеивающую часть 126, образованную, с одной стороны, выемкой 128, сделанной на стенке 120 выступа на выходе канала 122 и, с другой стороны, продолжением отверстия 124.

Регулировочная часть названа так потому, что минимальное сечение отверстия 124 влияет на количество холодного воздуха, проходящего по каналу 122.

Рассеивающая часть 126 выходит вовнутрь полости 105 и сообщается с отверстием 124. Отверстие 124 выходит, с одной стороны, вовнутрь рассеивающей части 126 и, с другой стороны, вовнутрь прохода 118.

Отверстие 124 может быть цилиндрической формы и проделано, например, сверлением с помощью лазера или электроискровым методом в основании стенки 120. Ось отверстия 124, в общем случае, перпендикулярна стенке основания 107.

Боковая стенка 120 выступа 110 образует тупой угол А, превышающий 90°, со стенкой основания 107 таким образом, чтобы не препятствовать пробивке вертикального отверстия 124.

Выемка 128 образована частично на стенке 120 и частично внутри отверстия 124. Эта выемка 128 образована, например, электроискровым способом при помощи электрода, который центрируют в отверстии 124. Этот электрод может быть конической формы с более или менее закругленным концом. Таким образом, выемка 128 представляет собой преимущественно контур общей треугольной формы, а основание этой выемки искривлено, еще точнее - выпукло по отношению к оси отверстия 124.

Треугольный контур позволяет расширить поток воздуха, выходящий из отверстия 124 и таким образом увеличить охлаждаемую площадь боковой стенки 120.

Искривленная форма основания выемки 128, в свою очередь, препятствует образованию ребер на выступе 110, что делало бы его менее прочным. Кроме того, выемка 128 заканчивается до верхней кромки выступа 110 для того, чтобы не разрушать ее. Преимущественно выемка 128 заканчивается раньше или вблизи середины высоты выступа 110, чтобы поток холодного воздуха, выходящего веером из выемок 128, распространился наиболее полно по стенке 120.

Разумеется, распределение каналов охлаждения 122 вдоль стенки 120 является важным фактором, обеспечивающим хорошее охлаждение этой стенки и, предпочтительно, каналы 122 распределены регулярно и достаточно близко друг от друга, чтобы образовывать ощутимо непрерывный защитный слой вдоль стенки 120. Наклон на угол А стенки 120 также имеет значение для того, чтобы поток холодного воздуха, выходящий из каналов 122, оставался в соприкосновении со стенкой 120. Также угол А достаточно мал, чтобы поток холодного воздуха, циркулирующий согласно стрелке С, не отклонялся от стенки 120, а наоборот оставался в контакте с ней.

В то же время угол А достаточно велик, чтобы не затруднять процесс пробивки каналов 122, как было показано выше. Таким образом, угол А, образованный между боковой стенкой 120 выступа 110 и стенкой основания 107, находится между 110° и 135° и, преимущественно, располагается вблизи 120°.

Лопатка по описанному ранее примеру проста в изготовлении, так как, с одной стороны, можно легко изготовить с помощью литья боковую стенку 120, наклоненную к выступу 110, таким образом, чтобы избежать этапа дополнительной обработки. Кроме того, пробивка каналов охлаждения облегчена наклоном стенки 120 и может быть осуществлена быстро, с использованием известных методов сверления. Изготовление подобной лопатки, таким образом, достаточно экономично.

Изобретение не ограничивается лопаткой, имеющей один единственный выступ на спинке лопатки, но может применяться, например, к лопатке, имеющей выступ на спинке лопатки и только часть выступа на корыте лопатки, или еще к лопатке, имеющей промежуточный выступ, который не проходит ни по корыту лопатки, ни по ее спинке, а который расположен на торце лопатки между корытом лопатки и ее спинкой. Каким бы ни был рассматриваемый выступ, благодаря изобретению его можно охлаждать, формируя слой холодного воздуха напротив его боковой стенки, подвергающейся воздействию горячих газов.

1. Полая лопатка газотурбинного двигателя, имеющая внутренний проход охлаждения (118), открытую полость (105), расположенную на свободном торце лопатки и ограниченную стенкой основания (107) и боковой стенкой (120), по меньшей мере, одного выступа (110), проходящего между передней кромкой и задней кромкой лопатки, и, по меньшей мере, один канал охлаждения (122), который соединяет упомянутый внутренний проход охлаждения с упомянутой открытой полостью, отличающаяся тем, что канал охлаждения (122) выходит в основание указанной боковой стенки выступа (110), причем боковая стенка (120) образует тупой угол (А), превышающий 90°, с упомянутой стенкой основания (107), в боковой стенке (120), выполнена выемка (128) в месте выхода указанного канала охлаждения (122), заканчивающаяся до верхней кромки выступа (110).

2. Полая лопатка по п.1, отличающаяся тем, что указанный выступ углублен относительно корыта лопатки.

3. Полая лопатка по п.1, отличающаяся тем, что указанный выступ проходит вдоль спинки лопатки.

4. Полая лопатка по п.1, отличающаяся тем, что указанный выступ расположен между спинкой и корытом лопатки.

5. Полая лопатка по п.1, отличающаяся тем, что указанный выступ проходит вдоль спинки и вдоль части корыта лопатки.

6. Полая лопатка по одному из пп.1-5, отличающаяся тем, что угол (А), образованный между боковой стенкой (120) и стенкой основания (107), имеет величину, заключенную между 110 и 135°, и предпочтительно около 120°.

7. Полая лопатка по одному из пп.1-5, отличающаяся тем, что контур выемки (128) имеет в основном треугольную форму.

8. Полая лопатка по одному из пп.1-5, отличающаяся тем, что основание выемки (128) искривлено.

9. Полая лопатка по одному из пп.1-5, отличающаяся тем, что канал охлаждения (122) состоит из двух частей: регулировочной части, образованной отверстием (124), и рассеивающей части (126), частично образованной выемкой (128).

10. Полая лопатка по одному из пп.1-5, отличающаяся тем, что многочисленные каналы охлаждения (122) равномерно распределены вдоль боковой стенки (120).

11. Полая лопатка по одному из пп.1-5, отличающаяся тем, что выемка (128) заканчивается вблизи середины высоты выступа (110).



 

Похожие патенты:

Изобретение относится к авиадвигателестроению. .

Изобретение относится к турбинной лопатке, согласно ограничительной части пункта 1 формулы изобретения. .

Изобретение относится к турбинной лопатке, содержащей профилированное, обтекаемое рабочим газом перо лопатки, которое имеет предназначенную для набегания рабочего газа переднюю кромку, а также заднюю кромку, предназначенную для сбегания рабочего газа, и первую систему каналов и вторую систему каналов для раздельного направления двух различных подаваемых раздельно в турбинную лопатку сред, при этом первая канальная система заканчивается, по меньшей мере, в одном первом расположенном в зоне задней кромки выходном отверстии для выдувания первой среды в рабочий газ.

Изобретение относится к высокотемпературным турбинам газотурбинных двигателей, а именно к способам и системам охлаждения рабочих лопаток турбин авиационных двигателей.

Изобретение относится к турбинной лопатке, согласно ограничительной части пункта 1 формулы изобретения, и к способу изготовления турбинной лопатки, согласно ограничительной части пункта 9 формулы изобретения

Изобретение относится к узлу, состоящему из лопатки и рубашки охлаждения лопатки, в направляющем сопловом аппарате газотурбинного двигателя

Изобретение относится к области энергетического машиностроения

Изобретение относится к области энергетического машиностроения, а более конкретно - к охлаждаемым лопаткам турбомашины
Наверх