Способ определения статических поправок

Изобретение относится к комплексному методу геофизической разведки, включающему сейсморазведку и электроразведку, и может быть использовано для учета неоднородностей строения верхней части разреза (ВЧР). Сущность: проводят сейсморазведку, интерпретируют и обрабатывают полученные данные. Дополнительно на совмещенных профилях проводят электроразведку для изучения строения ВЧР в зоне малых скоростей, в процессе которой регистрируют изменения электромагнитного поля и годографы электромагнитной волны. Определяют продольное электрическое сопротивление. По полученным данным выделяют единые стратиграфически увязанные геоэлектрические комплексы. Строят геоэлектрическую модель ВЧР. Затем с использованием данных геофизических исследований скважин или микросейсмического каротажа устанавливают взаимосвязь между временами регистрации электромагнитного и сейсмического полей. В каждой точке электроразведочных наблюдений пересчитывают электромагнитные годографы в псевдосейсмические. По полученным годографам в пределах каждого геоэлектрического комплекса рассчитывают значения прогнозных интервальных скоростей. Для выбранного интервала разреза строят схемы распределения прогнозных значений интервальных скоростей и его толщины, рассчитывают значения статических поправок. Технический результат: повышение достоверности и информативности определения статических поправок за счет учета локальных неоднородностей строения зоны малых скоростей.

 

Изобретение относится к геофизической разведке комплексным методом, включающим сейсморазведку и малоглубинную модификацию электроразведки зондированием становлением поля (МЗСБ), и может быть использовано для учета неоднородностей строения верхней части разреза (ВЧР) при поисково-разведочных работах для последующего учета при обработке сейсморазведочных данных.

Известен способ скважинной сейсморазведки, в котором определяют скоростные характеристики верхней части разреза - зоны малых скоростей (ЗМС). Сущность: в процессе бурения возбуждают упругие колебания путем воздействия породоразрушающего инструмента мобильной буровой установки на исследуемую среду. Одновременно регистрируют упругие колебания датчиком опорного сигнала, состоящим из четырех преобразователей, равномерно распределенных по периметру площадки рамы буровой установки, и наземным приемным устройством. Наземное приемное устройство устанавливают на дневной поверхности на расстоянии от устья скважины не менее 5-10 м на стержнях, заглубленных в грунт на глубину, превышающую мощность почвенного слоя. Выбирают диапазон рабочих частот от 100 Гц до 350 Гц, в пределах которого выделяют полезные сигналы. Формируют взаимокорреляционные функции и определяют по ним сейсмические скорости и положение сейсмических границ. Технический результат: повышение точности и достоверности построения скоростной характеристики исследуемой среды (см. патент РФ на изобретение №2292063, МПК G01V 1/40).

Для проведения данного способа необходимо наличие скважины глубокого бурения.

Известны способы определения статических поправок методом регистрации волны, преломленной на подошве зоны малых скоростей (см. патент Великобритании №32090405, МПК G01V 1/28 и Шариф Р., Гелгарт Л., Сейсморазведка, т.1, М.: Мир, 1987).

Однако данный способ дает усредненное значение физических характеристик верхней части разреза (ВЧР) до подошвы зоны малых скоростей и не учитывает наличие локальных неоднородностей в ней.

Наиболее близким к предлагаемому решению является способ определения статических поправок, включающий возбуждение упругих волн от двух источников, находящихся на заданном расстоянии друг от друга, прием упругих волн сейсмоприемником, находящимся в стороне от источников на одной с ним линии, измерении времен пробега преломленной волны к приемнику от обоих источников, замеры альтитуд точек приема и линии проведения (см. авторское свидетельство СССР №1536248, МПК G01V 1/26).

Недостатком способа является априорное предположение о горизонтально слоистом, однородном строении ЗМС.

Задачей предлагаемого решения является разработка способа, позволяющего учитывать неоднородности зоны малых скоростей (верхняя часть разреза) мощностью несколько десятков метров при определении статических поправок. Предлагаемое решение направлено на повышение достоверности структурных построений при проведении геологоразведочных работ.

Технический результат заявляемого решения заключается в повышении достоверности, информативности и надежности способа определения статических поправок за счет учета локальных неоднородностей строения ЗМС.

Поставленная задача решается тем, что в способе определения статистических поправок, включающем проведение сейсморазведки, интерпретацию и обработку полученных данных, согласно решению дополнительно на совмещенных профилях проводят электроразведку для изучения строения верхней части разреза в зоне малых скоростей, регистрируют изменения электромагнитного поля и годографы электромагнитной волны, определяют продольное электрическое сопротивление, по полученным данным выделяют единые стратиграфически увязанные геоэлектрические комплексы, строят геоэлектрическую модель верхней части разреза, затем с использованием данных геофизических исследований скважин или микросейсмического каротажа устанавливают взаимосвязь между временами регистрации электромагнитного и сейсмического полей, в каждой точке электроразведочных наблюдений пересчитывают электромагнитные годографы в псевдосейсмические, по ним в пределах каждого геоэлектрического комплекса рассчитывают значения прогнозных интервальных скоростей, для выбранного интервала разреза строят схемы распределения прогнозных значений интервальных скоростей и его толщины, рассчитывают значения статических поправок.

Статические поправки определяются по годографу электромагнитной волны, что не известно из уровня техники. Под годографом электромагнитной волны понимают зависимость времени регистрации от глубины проникновения электромагнитного поля (см. Электроразведка: Справочник геофизика. - М.: Недра, 1979 г.). Известные аналоги не используют характеристику электромагнитного поля - годограф, для изучения верхней части разреза. Информативным параметром для изучения верхней части разреза в известных решениях, в том числе в решении SU №1448319, является амплитуда электромагнитной волны и ее трансформации в такие параметры как продольное сопротивление, суммарная продольная проводимость и т.д. Амплитуда электромагнитной волны и ее трансформации не могут быть использованы для определения статических поправок.

Статические поправки в предлагаемом способе определяют на основе псевдосейсмического годографа, полученного на основе взаимосвязи электромагнитного и сейсмического (МСК и ВСП) годографов. Не известно решений, в которых устанавливается взаимосвязь электромагнитного и сейсмического годографов для определения статических поправок.

Электроразведку проводят в малоглубинной модификации МЗСБ, комплексно интерпретируют данные. Для этого вначале проводят корреляцию электроразведочных границ в верхней части разреза, по значениям продольного электрического сопротивления выделяют единые стратиграфически увязанные геоэлектрические комплексы, строят согласованную геоэлектрическую модель ВЧР, затем с использованием данных вертикального сейсмического профилирования (ВСП) или микросейсмического каротажа (МСК), устанавливают взаимосвязь между временами регистрации электромагнитного и волнового полей и в каждой точке электромагнитных зондирований пересчитывают годографы электромагнитной волны в псевдосейсмические годографы, по ним в пределах каждого геоэлектрического комплекса рассчитывают значения прогнозных интервальных скоростей, для определенного стратиграфического интервала разреза строят схемы распределения прогнозных значений интервальных скоростей и его толщины, рассчитывают значения статических поправок. Технический результат: повышение информативности, достоверности и надежности геофизических работ.

Существенными отличиями заявляемого способа в сравнении с известными техническими решениями являются:

- дополнительно с сейсморазведкой на совмещенных профилях проводят электроразведку в малоглубинной модификации МЗСБ, комплексно интерпретируют полученные данные, проводят корреляцию электроразведочных границ, по значениям продольного электрического сопротивления выделяют единые стратиграфически увязанные геоэлектрические комплексы, строят согласованную геоэлектрическую модель. Это позволяет использовать всю совокупность геофизической информации при построении согласованной геоэлектрической модели изучаемого разреза;

- с использованием ВСП в точке скважины или МСК, устанавливают взаимосвязь между временами регистрации электромагнитного и волнового полей и в каждой точке электромагнитных зондирований измеренные годографы электромагнитной волны пересчитываются в псевдосейсмические годографы, по которым в пределах каждого геоэлектрического комплекса рассчитывают значения прогнозных интервальных скоростей. Это позволяет изучить латеральную изменчивость ВЧР в межскважинном пространстве;

- для определенного стратиграфического интервала разреза строят схемы распределения прогнозных значений интервальных скоростей и его толщины. Это дает возможность оценить степень скоростной неоднородности верхней части разреза и учесть ее при расчете статических поправок при цифровой обработке сейсмического материала.

Способ реализуется следующим образом.

В пределах изучаемой площади одновременно с сейсморазведкой проводят электроразведку в малоглубинной модификации зондированием становлением поля (МЗСБ) по линиям сейсмических профилей. Регистрируют изменения электромагнитного поля и годографы электромагнитной волны, определяют продольное электрическое сопротивление.

Обработка данных электроразведки заключается в расчете геоэлектрических параметров разреза: суммарной продольной проводимости разреза, продольного электрического сопротивления, кажущейся глубины проникновения электромагнитного поля, времени его регистрации. По полученным значениям продольного электрического сопротивления выделяют единые стратиграфически увязанные геоэлектрические комплексы и локальные неоднородности, строят согласованную геоэлектрическую модель ВЧР (верхней части разреза). С использованием данных ГИС (геофизических исследований скважин) в точке скважины или МСК (микросейсмического каротажа) устанавливают взаимосвязь между временами регистрации электромагнитного и упругого полей, в каждой точке электромагнитных зондирований пересчитывают годографы электромагнитной волны в псевдосейсмические годографы. По ним в пределах каждого геоэлектрического комплекса рассчитывают значения прогнозных интервальных скоростей.

Для определенного стратиграфического интервала ВЧР строят схемы распределения прогнозных значений интервальных скоростей, рассчитывают значения статических поправок, которые потом используются при обработке сейсмической информации по стандартному комплексу программ.

Заявляемый способ был опробован в различных геологических условиях. Положительный опыт при поисково-разведочных работах получен в пределах Западной и Восточной Сибири, внешней части Прикаспийской впадины.

Полученные экспериментальные данные показывают его высокую эффективность и повышение достоверности структурных построений при проведении сейсморазведочных работ на участках со сложным строением верхней части разреза.

Способ определения статических поправок, включающий проведение сейсморазведки, интерпретацию и обработку полученных данных, отличающийся тем, что дополнительно на совмещенных профилях проводят электроразведку для изучения строения верхней части разреза в зоне малых скоростей, регистрируют изменения электромагнитного поля и годографы электромагнитной волны, определяют продольное электрическое сопротивление, по полученным данным выделяют единые стратиграфически увязанные геоэлектрические комплексы, строят геоэлектрическую модель верхней части разреза, затем с использованием данных геофизических исследований скважин или микросейсмического каротажа устанавливают взаимосвязь между временами регистрации электромагнитного и сейсмического полей, в каждой точке электроразведочных наблюдений пересчитывают электромагнитные годографы в псевдосейсмические, по ним в пределах каждого геоэлектрического комплекса рассчитывают значения прогнозных интервальных скоростей, для выбранного интервала разреза строят схемы распределения прогнозных значений интервальных скоростей и его толщины, рассчитывают значения статических поправок.



 

Похожие патенты:

Изобретение относится к области обработки данных в сейсморазведке. .

Изобретение относится к области сейсморазведки и может быть использовано при поисках и разведке нефтегазовых месторождений. .

Изобретение относится к области обработки сейсмических данных и может быть использовано для сбора и обработки записей отдельных датчиков. .

Изобретение относится к морской сейсморазведке и, в частности, к способу ослабления эффекта многократных волн от поверхности воды при сейсмических сигналах. .

Изобретение относится к способу обработки сейсмических данных, в частности многокомпонентных сейсмических данных, предназначенному для удаления помех из собранных данных.

Изобретение относится к технике изучения океана с помощью автономных и автоматических подводных аппаратов. .

Изобретение относится к геофизике и может быть использовано при разведке нефтяных и газовых месторождений. .

Изобретение относится к методам геофизических исследований земной коры. .

Изобретение относится к способам определения параметров пласта. .

Изобретение относится к области геофизики и может быть использовано для воспроизводства контура рудных залежей. .

Изобретение относится к способам создания геологических моделей и может быть использовано для выбора оптимального варианта размещения скважин для добычи углеводородного сырья.

Изобретение относится к нефтегазопромысловой геологии и может быть использовано для получения информации о продуктивности и контурах исследуемого участка площади бурением нескольких стволов из одной скважины.

Изобретение относится к геофизике и предназначено для генерации и отображения виртуального керна, аналогичного образцу части земной породы. .

Изобретение относится к области геофизики и может быть использовано для определения местоположения трассы магистральных сооружений. .

Изобретение относится к области геофизических исследований скважин и может быть использовано для определения проницаемости горных пород в скважинах, бурящихся на нефть, газ или воду
Наверх