Способ селективного окисления этана до этилена

Изобретение относится к способам получения этилена и этилена и уксусной кислоты из исходного газа, содержащего этан и кислород при контактировании упомянутого газа с катализатором MOaVvTaxTeyOz, в котором а равно 1,0, v равно приблизительно от 0,01 до приблизительно 1,0, x равен приблизительно от 0,01 до приблизительно 1,0 и y равен приблизительно от 0,01 до приблизительно 1,0, а z представляет собой число атомов кислорода, необходимое, чтобы привести катализатор в электронно-нейтральное состояние. Применение отмеченных способов позволяет получать упомянутые продукты с высокой селективностью и высоким выходом за один проход в единицу времени в условиях реакции. 3 н. и 27 з.п. ф-лы, 2 табл.

 

Область техники, к которой относится изобретение

Изобретение относится к производству этилена. В частности, описан способ селективного окисления этана до этилена с применением смешанного оксидного катализатора, содержащего ванадий и вольфрам или молибден.

Уровень техники

Окислительное дегидрирование этана до этилена в газовой фазе при температурах выше 500°C обсуждается, например, в патентах США №№ 4250346, 4524236 и 4568790.

В патенте США № 4250346 для окисления этана до этилена описано применение композиции катализатора, содержащей элементы: молибден, X и Y в отношении a:b:c, где X представляет собой Cr, Mn, Nb, Ta, Ti, V и/или W; и Y представляет собой Bi, Ce, Co, Cu, Fe, K, Mg, Ni, P, Pb, Sb, Si, Sn, Tl и/или U; и a равно 1, b равно от 0,05 до 1, и c равно от 0 до 2. Суммарное значение c для Co, Ni и/или Fe должно составлять менее 0,5. Реакцию проводят в газовой фазе при температуре приблизительно ниже 550°C. Эффективность конверсии в этилен находится в диапазоне от 50 до 94% в зависимости от конверсии этана. Описанные катализаторы также можно применять для окисления этана до уксусной кислоты с эффективностью конверсии до уксусной кислоты приблизительно 18% при конверсии этана 7,5%. Давления реакционной смеси очень низкие, обычно 1 атм, что ограничивает выход продукта и рентабельность.

В патенте США № 4568790 описан способ окисления этана до этилена с применением оксидного катализатора, содержащего Mo, V, Nb и Sb. Реакцию предпочтительно проводят при температуре приблизительно от 200°C до приблизительно 450°C. Селективность, рассчитанная для этилена, при 50%-ной конверсии этана находится в диапазоне от 63 до 76%. Вновь низкие давления реакционной смеси ограничивают применимость способа.

В патенте США № 4524236 описан способ окисления этана до этилена с применением оксидного катализатора, содержащего Mo, V, Nb и Sb и, по меньшей мере, один металл из группы, состоящей из Li, Sc, Na, Be, Mg, Ca, Sr, Ba, Ti, Zr, Hf, Y, Ta, Cr, Fe, Co, Ni, Ce, La, Zn, Cd, Hg, Al, Tl, Pb, As, Bi, Te, U и W. Реакцию предпочтительно проводят при температуре от 200°C до приблизительно 400°C. Для одной из композиций, описанных в патенте '236, селективность в отношении этилена при 51%-ной конверсии этана составляет до 80%, однако выход продукции является низким.

Упомянутые выше описания в основном касаются получения этилена. Также известно применение смешанных металлоксидных катализаторов для превращения этана в уксусную кислоту. Например, в патенте США № 5162578 описан способ селективного получения уксусной кислоты из этана, этилена или их смесей с кислородом в присутствии смеси катализаторов, которая содержит, по меньшей мере: (A) полученный обжигом катализатор формулы MoxVy или MoxVyZy, в котором Z может представлять собой один или несколько металлов, выбранных из Li, Na, Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg, Sc, Y, La, Ce, Al, Tl, Ti, Zr, Hf, Pb, Nb, Ta, As, Sb, Bi, Cr, W, U, Te, Fe, Co и Ni; x равен от 0,5 до 0,9; y равен от 0,1 до 0,4; z равен от 0,001 до 1; и (B) катализатор гидратации этилена и/или катализатор окисления этилена. Второй компонент (B) катализатора, в частности, представляет собой катализатор окисления в виде молекулярного сита или палладийсодержащий катализатор окисления. Смесь катализаторов применяли для получения уксусной кислоты и этилена из исходной газовой смеси, состоящей из этана, кислорода, азота и водяного пара. Селективность в отношении уксусной кислоты составляла 34% и селективность в отношении этилена составляла 62% при конверсии этана 4%. Высокие степени конверсии этана достигались только с описанной смесью катализаторов, однако не в присутствии катализатора, содержащего компоненты A и B по отдельности.

Дополнительный способ получения продукта, содержащего этилен и/или уксусную кислоту, описан в Европейском патенте EP 0407091 B1. Согласно данному способу этан и/или этилен и газ, содержащий молекулярный кислород, при повышенной температуре приводят в соприкосновение с композицией смешанного металлоксидного катализатора общей формулы AaXbYc, в которой A представляет собой ModReeWf; X представляет собой Cr, Mn, Nb, Ta, Ti, V и/или W; Y представляет собой Bi, Ce, Co, Cu, Fe, K, Mg, Ni, P, Pb, Sb, Si, Sn, Tl и/или U; a равно 1; b и c независимо равны числу от 0 до 2; d+e+f=a, и e не равно нулю. Селективность в отношении уксусной кислоты или этилена можно регулировать путем регулирования отношения Mo к Re. Максимальная селективность, полученная в отношении уксусной кислоты, составляла 78% при 14,3%-ной конверсии этана. Наиболее высокая селективность в отношении этилена составляла 70% при 15%-ной конверсии этана.

Таким образом, цель изобретения заключается в разработке способа, который позволяет подвергать этан и/или этилен окислению до этилена простым и целенаправленным способом с высокой селективностью и высоким выходом продукта за один проход в единицу времени в условиях реакции, которые являются настолько мягкими, насколько это возможно.

Сущность изобретения

Неожиданно было обнаружено, что этан до этилена можно окислять в относительно мягких условиях простым способом с высокой селективностью и прекрасными выходами продукта за один проход в единицу времени, если применять катализатор с формулой MoaVvTaxTey. Предпочтительно a равно 1,0; v равно приблизительно от 0,01 до приблизительно 1,0, более предпочтительно - приблизительно от 0,1 до приблизительно 0,5; x равен приблизительно от 0,01 до приблизительно 1,0, более предпочтительно - приблизительно от 0,05 до приблизительно 0,2; и y равен приблизительно от 0,01 до приблизительно 1,0, более предпочтительно - приблизительно от 0,1 до приблизительно 0,5.

Дополнительный аспект изобретения относится к катализатору, особенно подходящему для окисления этана для производства этилена. Согласно особенно предпочтительному варианту осуществления изобретения, катализатор имеет формулу Mo1,0V0,3Ta0,1Te0,3Oz, где z зависит от состояния окисления металлов и представляет собой число, которое приводит катализатор в электронно-нейтральное состояние.

Подробное описание изобретения

Настоящее изобретение относится к способу селективного получения этилена из исходного газа, содержащего этан и кислород, путем приведения исходного газа в контакт с катализатором формулы MoaVvTaxTey. Предпочтительно a равно 1,0; v равно приблизительно от 0,01 до приблизительно 1,0, более предпочтительно - приблизительно от 0,1 до приблизительно 0,5; x равен приблизительно от 0,01 до приблизительно 1,0, более предпочтительно - приблизительно от 0,05 до приблизительно 0,2; и y равен приблизительно от 0,01 до приблизительно 1,0, более предпочтительно - приблизительно от 0,1 до приблизительно 0,5. Применяемый здесь катализатор упоминается со ссылкой на формулу MoaVvTaxTey. Специалисту в данной области будет очевидно, что в действительности катализатор представляет собой смешанный оксид, имеющий формулу MoaVvTaxTeyOz. Количество кислорода z определяется состояниями окисления A, V, Ta и Te и обычно не может быть определенным.

Согласно предпочтительному варианту осуществления изобретения катализатор имеет формулу MoaVvTaxTeyOz, в которой a, v, x и y находятся в указанном выше диапазоне. Особенно предпочтительный катализатор имеет формулу Mo1,0V0,3 Ta0,1Te0,3Oz.

Катализатор по изобретению можно получать так, как описано в патенте США № 6653253 (автор Lin), содержание которого в полном объеме включено здесь путем ссылки. Вкратце, соединения металлов, которые являются источниками металлов в катализаторе, объединяют в соответствующих количествах, по меньшей мере, в одном растворителе для образования раствора. Обычно соединения металлов содержат элементы A, V, X, Y и, по меньшей мере, одно из соединений металлов содержит O. Например, соединение формулы AaVvXxYyO, в котором A представляет собой Mo, X представляет собой Ta, и Y представляет собой Te, можно получать, объединяя водный раствор оксалата тантала с водным раствором или суспензией гептамолибдата аммония, метаванадата аммония и теллуровой кислотой, где концентрации соединений металлов таковы, что атомное отношение соответствующих элементов-металлов отвечает пропорциям, задаваемым стехиометрией требуемого катализатора.

Кроме того, можно применять широкий диапазон материалов, включая оксиды, нитраты, галогениды или оксигалогениды, алкоголяты, ацетилацетонаты и металлорганические соединения. Например, в качестве источника молибдена в катализаторе можно применять гептамолибдат аммония. Однако вместо гептамолибдата аммония также можно использовать такие соединения, как MoO3, MoO2, MoCl5, MoOCl4, Mo(OC2H5)5, ацетилацетонат молибдена, фосфорномолибденовую кислоту и кремниймолибденовую кислоту. Аналогично в качестве источника ванадия в катализаторе можно применять метаванадат аммония. Однако вместо метаванадата аммония также можно использовать такие соединения, как V2O5, V2O3, VOCl3, VCl4, VO(OC2H5), ацетилацетонат ванадия и ванадилацетилацетонат. Источник теллура может включать в себя теллуровую кислоту, TeCl4, Te(OC2H5)5, Te(OCH(CH3)2)4 и TeO2. Источник тантала может включать в себя смешанный оксалат аммония и тантала, Ta2O5, TaCl5, танталовую кислоту или Ta(OC2H5)5, а также более традиционный оксалат тантала.

Подходящие растворители включают в себя воду, спирты (включая, но не ограничиваясь перечисленным, метанол, этанол, пропанол, диолы и т.д.), а также другие полярные растворители, известные в данной области. Обычно вода является предпочтительной. Вода представляет собой любую воду, подходящую для применения в химическом синтезе, включая, без ограничения, дистиллированную воду и деионизованную воду. Количество присутствующей воды соответствует такому количеству, которое достаточно для достаточно долгого удерживания элементов главным образом в растворе, чтобы во время стадий получения избежать или свести к минимуму композиционную и/или фазовую сегрегацию. Как только образуется водный раствор, воду удаляют с помощью сочетания любых подходящих способов, известных в данной области, для образования предшественника катализатора. Такие способы включают в себя, без ограничения, сушку в вакууме, сушку вымораживанием, сушку распылением, ротационное выпаривание и сушку на воздухе. Ротационное выпаривание или сушка на воздухе обычно являются предпочтительными.

Сразу после получения предшественник катализатора обжигают в инертной атмосфере. Инертная атмосфера может представлять собой любой материал, который является в значительной степени инертным, то есть не взаимодействует с предшественником катализатора или не влияет на него. Подходящие примеры включают в себя, без ограничения, азот, аргон, ксенон, гелий или их смеси. Предпочтительно инертной атмосферой является аргон или азот, более предпочтительно - аргон. Инертная атмосфера может представлять собой поток над поверхностью предшественника катализатора или не представлять собой поток. Если применяется азот, обычно применяют поток. Если инертной атмосферой является аргон, то поток обычно не применяют. Когда инертная атмосфера представляет собой поток над поверхностью предшественника катализатора, скорость потока может изменяться в широких пределах, например, объемная скорость может составлять от 1 до 500 час-1. Обжиг обычно осуществляют при температуре от 350°C до 850°C, предпочтительно от 400°C до 700°C, более предпочтительно - от 500°C до 640°C. Для образования катализатора обжиг проводят достаточно долго. В одном из вариантов осуществления изобретения обжиг проводят в течение периода от 0,5 до 30 часов, предпочтительно от 1 до 25 часов и более предпочтительно от 1 до 15 часов.

Катализатор по изобретению можно применять сам по себе в виде твердого катализатора или можно применять вместе с подходящей подложкой. В качестве традиционных материалов подложки подходят, например, пористый диоксид кремния, прокаленный диоксид кремния, кизельгур, силикагель, пористый или непористый оксид алюминия, диоксид титана, диоксид циркония, диоксид тория, оксид лантана, оксид магния, оксид кальция, оксид бария, оксид олова, диоксид церия, оксид цинка, оксид бора, нитрид бора, карбид бора, фосфат бора, фосфат циркония, силикат алюминия, нитрид кремния или карбид кремния, а также стекло, углеродное волокно, углерод, активированный уголь, металлоксидные или металлические сетки или соответствующие сплошные подложки.

Материалы подложки для конкретного, представляющего интерес окисления следует выбирать исходя из оптимизации как площади поверхности, так и размера пор. После формования катализатор можно использовать в виде элемента подложки правильной или неправильной формы, а также в форме порошка в качестве катализатора гетерогенного окисления.

С другой стороны, катализатор по изобретению можно инкапсулировать в материал. Подходящие материалы для инкапсулирования включают в себя SiO2, P2O5, MgO, Cr2O3, TiO2, ZrO2 и Al2O3. Способы инкапсулирования материалов в оксиды известны в данной области. Подходящий способ инкапсулирования материалов в оксиды описан в патенте США № 4677084 и процитированных в нем материалах, содержание которых в полном объеме включено здесь путем ссылки.

Окисление этана можно проводить в реакторе с кипящим слоем или в реакторе с неподвижным слоем катализатора. Для применения в кипящем слое катализатор обычно измельчают до размера частиц в диапазоне от 10 до 200 мкм или получают с помощью сушки распылением.

Газообразное сырье и любой рециркулирующий газ, объединенный с упомянутым исходным газом, содержит главным образом этан, однако может содержать некоторое количество этилена и подается в реактор в виде чистого газа или в смеси с одним или несколькими другими газами. Подходящими примерами таких дополнительных газов или газов-носителей являются азот, метан, моноксид углерода, диоксид углерода, воздух и/или водяной пар. Газ, содержащий молекулярный кислород, может представлять собой воздух или газ, который содержит более высокую или более низкую концентрацию молекулярного кислорода, чем воздух, например чистый кислород.

Реакцию обычно проводят при температуре приблизительно от 200°С до приблизительно 500°C, предпочтительно приблизительно от 200°С до приблизительно 400°C. Давление может быть равным атмосферному или превышающим атмосферное давление, например приблизительно от 1 до приблизительно 50 бар, предпочтительно приблизительно от 1 до приблизительно 30 бар.

Реакцию можно проводить в реакторе с неподвижным слоем катализатора или в реакторе с кипящим слоем катализатора. Этан можно сначала смешивать с инертным газом, таким как азот, или водяным паром до того как вводится кислород или газ, содержащий молекулярный кислород. Перед тем как газовая смесь приводится в соприкосновение с катализатором, смешанные газы можно предварительно нагревать до температуры реакции в зоне предварительного нагрева. Уксусная кислота может быть удалена из газа, покидая реактор путем конденсации. Другие газы можно возвращать в реактор со стороны впускного устройства, где дозируется кислород или газ, содержащий молекулярный кислород.

Согласно предпочтительному варианту осуществления изобретения исходный этан очищают и дистиллируют, чтобы получить очищенный этан в виде верхнего потока и пропан и другие более тяжелые газы в виде нижнего потока. Этан подают в реактор для окисления, который представляет собой реактор с кипящим слоем, содержащим описанный выше катализатор. Согласно особенно предпочтительному варианту осуществления изобретения катализатор имеет формулу MoaVvTaxTeyOz, где a, v, x, y и z имеют указанные выше значения. Согласно особенно предпочтительному варианту осуществления изобретения катализатор имеет формулу Mo1,0V0,3Ta0,1Te0,3Oz. Реактор также обеспечивается кислородом.

В результате реакции окисления получается смесь газов, включающая в себя этилен, уксусную кислоту, воду, COx (CO и CO2), непрореагировавший этан и смешанные тяжелые побочные продукты. Полученный газ, выходящий из реактора, предпочтительно фильтруют, чтобы удалить тонкодисперсные частицы катализатора, и затем направляют в скруббер для очистки рециркулирующего газа, который образует верхний поток, содержащий этилен, этан и COx. Верхний поток из скруббера для очистки рециркулирующего газа направляют в CO-конвертер с неподвижным слоем с последующей стадией обработки, во время которой из верхнего потока удаляется COx. Затем поток направляют в башню для очистки этилена, в которой получается производимый этилен в виде верхнего потока и этан в виде нижнего потока, который возвращается в реактор для окисления.

Нижний поток из скруббера для очистки рециркулирующего газа, который содержит уксусную кислоту, воду и тяжелые фракции побочных продуктов, можно очищать, как известно в данной области, получая при этом очищенную уксусную кислоту. Например, нижний поток можно направлять в колонну осушки для удаления воды и затем в колонну для тяжелых фракций, чтобы удалить пропионовую кислоту и другие тяжелые компоненты.

Специалисту в данной области будет очевидно, что башни, скрубберы и направление газов по определенному маршруту, упомянутые в предыдущих параграфах, будут связаны различными теплообменниками, насосами и подводящими трубами и будут обладать эксплуатационными параметрами, которые определяются конкретной смесью участвующих газов. В компетенцию специалиста в данной области входит определение надлежащих конфигураций и параметров, задаваемых в приведенном выше описании.

Дополнительным аспектом изобретения является катализатор, который особенно подходит для окисления этана при производстве этилена и уксусной кислоты с высокой селективностью в отношении этилена. Селективность в отношении этилена составляет предпочтительно приблизительно 80%, более предпочтительно - приблизительно от 70% до приблизительно 80%. Согласно предпочтительному варианту осуществления изобретения катализатор имеет формулу MoaVvTaxTeyOz, где a, v, x, y и z имеют значения, указанные выше. Согласно особенно предпочтительному варианту осуществления изобретения катализатор имеет формулу Mo1,0V0,33Ta0,12Te0,28Oz.

Чтобы проиллюстрировать предпочтительные варианты осуществления изобретения, включены следующие примеры. Специалист в данной области должен понимать, что способы, описанные в следующих примерах, представляют собой способы, изобретенные авторами для желательного применения изобретения на практике, и поэтому можно считать, что в них устанавливаются предпочтительные режимы для их практического применения. Однако специалист в данной области должен понимать, что в свете настоящего описания в конкретных вариантах осуществления изобретения, которые описаны, не выходя за пределы объема изобретения, можно сделать много изменений и однако же получить подобный или аналогичный результат.

Пример

Катализатор с формулой Mo1,0V0,33Ta0,12Te0,28Oz получают следующим образом: 25,0 г тетрагидрата гептамолибдата аммония (Aldrich Chemical Company), 5,47 г метаванадата аммония (Aldrich Chemical Company) и 9,10 г теллуровой кислоты (Aldrich Chemical Company) растворяют в 400 мл воды при нагревании до 80°C. После охлаждения до комнатной температуры добавляют 28,0 мл водного раствора оксалата тантала (0,5 M Ta, 1,5 M оксалата). Воду удаляют с помощью роторного испарителя на горячей водяной бане при 50°C, получая при этом предшественник катализатора в виде твердого вещества. Перед обжигом твердое вещество сушат при 120°C.

Предшественник катализатора в виде твердого вещества обжигают в атмосфере азота в закрытом тигле, который предварительно продувают азотом при 600°C в течение 2 часов. Печь нагревают с линейной скоростью 10°C/мин до 50°C, выдерживают в течение 2 часов и затем повторно нагревают до 600°C с линейной скоростью 10°C/мин и выдерживают при 600°C в течение 2 часов. Полученный таким образом катализатор измельчают до тонкодисперсного порошка, прессуют в пресс-форме и затем дробят и просеивают через сито, получая при этом частицы размером 600-710 микрон.

Приблизительно 3 мл катализатора смешивали с приблизительно 7 мл частиц кварца и загружали в нижнюю половину трубчатого реактора из нержавеющей стали с внутренним диаметром 7,7 мм. На верхнюю часть слоя катализатора наносили слой кварца как для заполнения реактора, так и для предварительного нагрева исходных газов перед внесением слоя катализатора. Реактор нагревают и охлаждают, применяя циркуляцию термостатированного масла в наружной рубашке. Воду испаряют в испарителе и смешивают с требуемыми объемами газообразных этана, кислорода и азота до того, как ввести в реактор посредством регуляторов массового расхода. Давление реакции поддерживают на требуемом уровне с помощью регулятора обратного давления, расположенного на газоотводе реактора. Температуру в слое катализатора измеряют с помощью подвижной термопары, вставленной в измерительный канал для ввода термопары в центре слоя катализатора. Температуру масляной рубашки повышают до тех пор, пока не достигнут требуемой конверсии кислорода. Исходный газ, подаваемый для реакции, и полученный газ анализируют в режиме онлайн с помощью газовой хроматографии.

Время контакта определяют как:

t(сек) = насыпной объем катализатора (мл)/объемная скорость потока проходящего через реактор газа в условиях реакции (мл/сек).

GHSV = часовая объемная скорость подачи газа является величиной, обратной времени контакта t, с поправкой на нормальные условия (0°C, 1 атм).

Концентрацию этана в исходном газе изменяли от 37 до 67 моль %; концентрацию кислорода в исходном газе изменяли от 7,6 до 15,3 моль %, и концентрацию воды изменяли от 4 до 9 моль % с учетом баланса, соответствующего добавленному азоту, как показано в таблице 1. В диапазоне применяемых времен контакта достигали очень высокой селективности в отношении этилена от 74 до 80%, как показано в таблице 2. Кроме того, в диапазоне условий испытания селективность в отношении CO2 и CO очень низкая, в сумме не более 8%. Выход продукции, измеренный в отношении этилена с помощью STY, также очень высокий со значениями до 460 кг этилена на м3 в час.

Таблица 1
Условия реакции
Образец Этан
(%)
Этилен
(%)
Кислород
(%)
Азот
(%)
Вода
(%)
Р
(фунт/
кв.дюйм)
Т
Сек.
GHSV
час-1
Т
в
центре
Т
в рубашке
1 39 0 8,1 43 5 220 10,2 2561 328 Нет
данных
2 38 0 7,5 40 11 220 9,5 2732 318 Нет
данных
3 37 0 8,4 49 9 216 9,7 2743 309 308
4 39 0 8,6 50 7 218 9,7 2746 309 308
5 38 0 8,7 53 3 217 9,6 2743 314 315
6 46 0 14,9 54 7 216 9,4 2738 323 320
7 38 0 15,3 41 5 215 9,3 2732 332 327
8 38 0 12,6 44 5 215 9,5 2742 320 319
9 40 0 14,4 41 4 215 14,4 1808 318 315
10 54 0 7,6 33 5 217 9,8 2740 305 303
11 66 0 7,8 19 5 217 10,0 2739 295 303
12 66 0 12,0 14 5 216 9,6 2737 315 312
13 65 0 15,1 11 5 215 9,4 2737 322 317
14 67 0 7,7 17 5 216 15,1 1814 290 291
15 67 0 12 13,6 4 216 14,8 1814 303 301
16 67 14 15 10,9 4 215 14,6 1813 310 307
17 66 15 14 15,5 0 216 14,4 1826 312 Нет
данных
Таблица 2
Рабочие характеристика катализатора
Образец Конверсия этана (%) Конверсия О2 (%) Селективность в отношении этилена (%) Селективность в отношении СО2 Селективность в отношении СО STY,
этилен
1 24 91 79 1 3 258
2 23 95 75 1 3 241
3 24 93 77 1 3 252
4 24 93 76 1 3 247
5 25 94 80 1 3 276
6 32 86 79 2 3 344
7 42 94 76 3 5 436
8 32 93 77 2 4 354
9 39 96 74 2 5 261
10 16 88 77 1 2 236
11 14 95 78 1 2 265
12 21 97 76 1 3 382
13 26 97 75 2 4 460
14 13 92 77 1 2 160
15 19 98 74 1 3 230
16 24 98 73 2 4 274
17 24 97 77 2 4 298

Полученные результаты представляют собой существенное преимущество по сравнению с прототипом. Например, катализатор Mo2,5V1Nb0,32Te1,69Е-0,5, описанный в примере 10 патента США 6013957, давал селективность в отношении этилена только 28,4%, в то время как о селективностях в отношении CO2 и CO не сообщается; если сделать предположение о том, что продукты, о которых не сообщается, в действительности представляют собой COx, то такая неэффективность могла бы составить до 34,4%. Также, в примере B заявки WO 2004/108277 сообщалось о только 5%-ной селективности катализатора Mo1V0,529Nb0,124Ti0,331 в отношении этилена при 35%-ной селективности в отношении COx. Таким образом, катализатор по настоящему изобретению обеспечивает высокую селективность в отношении этилена с очень низкими потерями на продукты глубокого окисления COx.

1. Способ получения этилена из исходного газа, содержащего этан и кислород; упомянутый способ включает в себя контактирование исходного газа с катализатором в реакторе для получения выходящего потока, содержащего этилен; катализатор имеет формулу
MOaVvTaxTeyOz,
в которой а равно 1,0, v равно приблизительно от 0,01 до приблизительно 1,0, х равен приблизительно от 0,01 до приблизительно 1,0, и y равен приблизительно от 0,01 до приблизительно 1,0, и z представляет собой число атомов кислорода, необходимое, чтобы привести катализатор в электронно-нейтральное состояние.

2. Способ по п.1, в котором исходный газ дополнительно содержит этилен.

3. Способ по п.1, в котором а равно 1,0, v равно приблизительно от 0,1 до приблизительно 0,5, х равен приблизительно от 0,05 до приблизительно 0,2, и y равен приблизительно от 0,1 до приблизительно 0,5.

4. Способ по п.1, в котором катализатор имеет формулу Мо1,0V0,3Та0,1Те0,3Oz.

5. Способ по п.1, в котором реактор представляет собой реактор с неподвижным слоем, содержащим катализатор.

6. Способ по п.1, в котором реактор представляет собой реактор с кипящим слоем, содержащим катализатор.

7. Способ по п.1, в котором исходный газ контактирует с катализатором при температуре приблизительно от 200°С до приблизительно 500°С.

8. Способ по п.7, в котором исходный газ контактирует с катализатором при температуре приблизительно от 200°С до приблизительно 400°С.

9. Способ по п.1, в котором катализатор нанесен на подложку, выбранную из группы, состоящей из пористого диоксида кремния, прокаленного диоксида кремния, кизельгура, силикагеля, пористого и непористого оксида алюминия, диоксида титана, диоксида циркония, диоксида тория, оксида лантана, оксида магния, оксида кальция, оксида бария, оксида олова, диоксида церия, оксида цинка, оксида бора, нитрида бора, карбида бора, фосфата бора, фосфата циркония, силиката алюминия, нитрида кремния, карбида кремния и стекла, углерода, углеродного волокна, активированного угля, металлоксидных или металлических сеток или соответствующих сплошных подложек.

10. Способ по п.1, в котором катализатор не нанесен на подложку.

11. Способ по п.1, в котором катализатор инкапсулирован в материал.

12. Способ по п.11, в котором материал выбран из группы, состоящей из SiO2, P2O5, MgO, Cr2O3, TiO2, ZrO2 и Al2O3.

13. Способ по п.1, дополнительно включающий в себя стадию разделения исходного предшественника, содержащего этан и пропан, для выделения этана.

14. Способ по п.1, в котором выходящий поток содержит моноксид углерода, дополнительно включающий в себя стадию селективного окисления упомянутого выходящего потока для превращения моноксида углерода в диоксид углерода.

15. Способ по п.11, дополнительно включающий в себя стадию удаления диоксида углерода из выходящего потока.

16. Способ по любому из пп.1, 13 или 15, дополнительно включающий в себя стадию дистилляции выходящего потока для удаления из него непрореагировавшего этана.

17. Способ по п.13, дополнительно включающий в себя стадию возвращения непрореагировавшего этана в реактор.

18. Способ по любому из пп.1, 13 или 15, в котором выходящий поток содержит уксусную кислоту; способ, дополнительно включающий в себя стадию выделения уксусной кислоты из выходящего потока.

19. Способ по п.18, в котором выходящий поток содержит воду, пропионовую кислоту или их смесь; способ, дополнительно включающий в себя стадию выделения упомянутой воды и упомянутой пропионовой кислоты из уксусной кислоты.

20. Способ по п.1, в котором катализатор имеет селективность в отношении этилена приблизительно от 50% до приблизительно 80%.

21. Способ по п.20, в котором селективность в отношении этилена составляет приблизительно от 70% до приблизительно 80%.

22. Способ получения этилена и уксусной кислоты из исходного газа, содержащего этан и кислород;
упомянутый способ включает в себя контактирование исходного газа с катализатором в реакторе для получения выходящего потока, содержащего этилен и уксусную кислоту; катализатор имеет формулу
MOaVvTaxTeyOz,
в которой а равно 1,0, v равно приблизительно от 0,01 до приблизительно 1,0, х равен приблизительно от 0,01 до приблизительно 1,0, и y равен приблизительно от 0,01 до приблизительно 1,0, и z представляет собой число атомов кислорода, необходимое, чтобы привести катализатор в электронно-нейтральное состояние.

23. Способ по п.22, дополнительно включающий в себя стадию разделения исходного предшественника, содержащего этан и пропан, для выделения этана.

24. Способ по п.22, в котором выходящий поток содержит моноксид углерода, дополнительно включающий в себя стадию селективного окисления упомянутого выходящего потока для превращения монооксида углерода в диоксид углерода.

25. Способ по п.24, дополнительно включающий в себя стадию удаления диоксида углерода из выходящего потока.

26. Способ по любому из пп.22, 23 или 24, дополнительно включающий в себя стадию дистилляции выходящего потока для удаления из него непрореагировавшего этана.

27. Способ по любому из пп.22, 23 или 24, в котором выходящий поток содержит уксусную кислоту; способ, дополнительно включающий в себя стадию выделения уксусной кислоты из выходящего потока.

28. Способ по п.27, в котором выходящий поток содержит воду, пропионовую кислоту или их смесь; способ, дополнительно включающий в себя стадию выделения упомянутой воды и упомянутой пропионовой кислоты из уксусной кислоты.

29. Способ по п.22, в котором, по меньшей мере, некоторое количество уксусной кислоты образуется в реакторе.

30. Способ окисления этана для получения этилена и уксусной кислоты, включающий в себя контактирование катализатора с исходным газом, содержащим этан и кислород, при температуре от 200 до 400°С, в котором катализатор имеет формулу Mo1,0V0,33Ta0,12Te0,28Oz,
в которой z представляет собой число атомов кислорода, необходимое, чтобы привести катализатор в электронно-нейтральное состояние.



 

Похожие патенты:

Изобретение относится к усовершенствованному способу получения, по меньшей мере, одного продукта частичного окисления и/или аммокисления пропилена, выбранного из группы, включающей пропиленоксид, акролеин, акриловую кислоту и акрилонитрил, исходным веществом которого является сырой пропан, при котором а) на первой стадии сырой пропан в присутствии и/или при отсутствии кислорода подвергают гомогенному и/или гетерогенно-катализируемому дегидрированию и/или оксидегидрированию, причем получают содержащую пропан и пропилен газовую смесь 1, b) от полученной на первой стадии газовой смеси 1, от содержащихся в ней, отличных от пропана и пропилена компонентов, таких как водород, моноокись углерода, в случае необходимости, отделяют некоторое количество и/или превращают его в другие соединения, такие как вода, двуокись углерода, причем из газовой смеси 1 получают газовую смесь 1', содержащую пропан и пропилен, а также отличные от кислорода, пропана и пропилена соединения, и на, по меньшей мере, еще одной стадии с) газовую смесь 1 и/или газовую смесь 1' в качестве компонента, содержащего молекулярный кислород, газовой смеси 2 подвергают гетерогенно-катализируемому частичному газофазному окислению и/или частичному газофазному аммокислению содержащегося в газовой смеси 1 и/или в газовой смеси 1' пропилена, где содержание бутена-1 в газовой смеси 2 составляет 1 об.%.

Изобретение относится к усовершенствованному способу окисления С2-С4алкана с получением соответствующих алкена и карбоновой кислоты, который включает введение этого алкана в окислительной реакционной зоне в контакт с содержащим молекулярный кислород газом и необязательно по меньшей мере одним соответствующим алкеном и водой в присутствии по меньшей мере двух катализаторов с различной селективностью, каждый из которых эффективен при окислении алкана до соответствующих алкена и карбоновой кислоты, с получением продукта, включающего алкен, карбоновую кислоту и воду, и в котором молярное соотношение между получаемыми в этой окислительной реакционной зоне алкеном и карбоновой кислотой регулируют или поддерживают на заданном уровне путем регулирования в такой окислительной реакционной зоне относительных количеств по меньшей мере двух катализаторов.

Изобретение относится к усовершенствованному способу окисления С2-С4алкана с получением соответствующих алкена и карбоновой кислоты, который включает введение этого алкана в окислительной реакционной зоне в контакт с содержащим молекулярный кислород газом и соответствующим алкеном и необязательно с водой в присутствии по меньшей мере одного катализатора, эффективного при окислении алкана до соответствующих алкена и карбоновой кислоты, с получением продукта, включающего алкен, карбоновую кислоту и воду, и в котором молярное соотношение между получаемыми в этой окислительной реакционной зоне алкеном и карбоновой кислотой регулируют или поддерживают на заданном уровне путем регулирования в такой окислительной реакционной зоне концентраций алкена и необязательной воды и необязательно также путем регулирования одного или нескольких следующих параметров: давление, температура и продолжительность пребывания в окислительной реакционной зоне.

Изобретение относится к способу получения моноолефинов из углеводородного сырья, содержащего один или более углеводородов парафинового ряда, имеющих по меньшей мере два атома углерода.

Изобретение относится к способу и катализатору для получения этилена и/или уксусной кислоты. .

Изобретение относится к способу дегидрирования углеводородов. .

Изобретение относится к усовершенствованному способу уменьшения количества и/или удаления восстанавливающих перманганат соединений, образующихся при карбонилировании пригодного к карбонилированию реагента с целью получения продукта карбонилирования, содержащего уксусную кислоту, включающему стадии: (а) разделения продукта карбонилирования с получением газообразного верхнего погона, содержащего уксусную кислоту, метанол, метилиодид, воду, метилацетат и, по меньшей мере, одно восстанавливающее перманганат соединение, включая ацетальдегид, и менее летучей фракции катализатора; (b) дистилляции газообразного верхнего погона с получением очищенной уксусной кислоты и низкокипящего газообразного верхнего погона, содержащего метанол, метилиодид, воду, уксусную кислоту, метилацетат и, по меньшей мере, одно восстанавливающее перманганат соединение, включая ацетальдегид; (с) конденсации низкокипящего газообразного верхнего погона и разделения его на сконденсированную тяжелую жидкую фракцию, содержащую метилиодид и метилацетат, и сконденсированную легкую жидкую фракцию, включающую воду, уксусную кислоту и, по меньшей мере, одно восстанавливающее перманганат соединение, включая ацетальдегид; (d) дистилляции легкой жидкой фракции в отдельной ректификационной колонне с получением второго газообразного верхнего погона, включающего метилиодид и, по меньшей мере, одно восстанавливающее перманганат соединение, включая ацетальдегид, и остатка, содержащего фракцию более высококипящей жидкости, содержащей метилацетат, воду и уксусную.

Изобретение относится к усовершенствованным совмещенным способам получения уксусной кислоты и винилацетата, включающим стадии: (а) получения первого потока продукта первой реакционной зоны, содержащего уксусную кислоту, где уксусную кислоту получают экзотермической реакцией карбонилирования и где по меньшей мере часть тепла от получения уксусной кислоты отводят из первой реакционной зоны и по меньшей мере часть тепла, отведенного при получении уксусной кислоты, переносят в систему теплообмена; (b) контактирования во второй реакционной зоне реакционного потока уксусной кислоты, включающего по меньшей мере часть уксусной кислоты из первого потока продукта, с кислородсодержащим газом в присутствии катализатора для получения второго потока продукта, включающего мономерный винилацетат; (с) направления по меньшей мере части второго потока продукта в секцию очистки для очистки по меньшей мере части винилацетата во втором потоке продукта; и либо (d) отвода по меньшей мере части тепла, перенесенного в систему теплообмена, и доставки по меньшей мере части тепла, отведенного из системы теплообмена, к по меньшей мере одному из реакционных потоков уксусной кислоты и секции очистки для очистки винилацетата, и где система теплообмена содержит поток парового конденсата, и где по меньшей мере часть тепла, отведенного при получении уксусной кислоты, доставляют к потоку парового конденсата, который используют для обеспечения теплом, отведенным при получении уксусной кислоты, по меньшей мере одного из реакционного потока уксусной кислоты и секции очистки винилацетата, причем поток парового конденсата, содержащий тепло от получения уксусной кислоты, направляют в испарительный сосуд низкого давления, поддерживаемый под давлением от 4,0 кг/см 2 до 5,3 кг/см2, либо (d) отвода по меньшей мере части тепла, перенесенного в систему теплообмена, и доставки по меньшей мере части тепла, отведенного из системы теплообмена, к по меньшей мере одному из реакционных потоков уксусной кислоты и секции очистки для очистки винилацетата, в котором используют цикл циркуляции конденсата для снятия основной части тепла реакции получения уксусной кислоты направлением потока горячего реакционного раствора через теплообменник для переноса тепла к потоку парового конденсата, причем поток парового конденсата, содержащий тепло от получения уксусной кислоты, направляют в испарительный сосуд низкого давления, поддерживаемый под давлением от 4,0 кг/см 2 до 5,3 кг/см2.

Изобретение относится к способу получения уксусной кислоты и конкретно к способу получения уксусной кислоты путем карбонилирования в присутствии родиевой каталитической системы.

Изобретение относится к усовершенствованному способу регулирования процессом карбонилирования для получения уксусной кислоты, который включает в себя импульсное испарение выводимого из реактора потока для получения верхнего погона; дальнейшую очистку верхнего погона путем дистилляции с получением уксусной кислоты при нормальных рабочих условиях; текущего контроля скорости образования уксусной кислоты путем регулирования, по меньшей мере, одного независимого переменного технологического параметра; текущего контроля скорости образования уксусной кислоты путем регулирования, по меньшей мере, одного зависимого переменного параметра; снижение скорости образования уксусной кислоты в ответ на изменение состояния процесса или состояния технологического оборудования; управление процессом при уменьшенной скорости образования уксусной кислоты путем регулирования, по меньшей мере, одного из независимых и/или зависимых переменных параметров в то время как система технологического оборудования возвращается к исходному состоянию нормального рабочего процесса до упомянутого изменения; повышение скорости образования уксусной кислоты после упомянутого изменения режима до тех пор, пока система не возвратится в исходное состояние нормального рабочего процесса путем управления, по меньшей мере, одним из независимых и/или зависимых параметров, где нелинейное многовариантное регулирование основано на модели процесса.
Изобретение относится к усовершенствованному способу получения уксусной кислоты и/или ее эфира или ангидрида, который включает контактирование метанола и/или его реакционноспособного производного, выбранного из метилацетата и диметилового эфира, с монооксидом углерода в присутствии катализатора при температуре в интервале от 250 до 600°С и под давлением в интервале от 10 до 200 бар и где содержание йодида в метаноле и/или его реакционноспособном производном, монооксиде углерода и катализаторе составляет меньше 500 час/млн, где катализатор состоит по существу из морденита, который в качестве каркасных элементов включает кремний, алюминий и один или несколько из других элементов, выбранных из галлия и бора, и в котором ионообменом или иным способом введены медь, никель, иридий, родий или кобальт.

Изобретение относится к усовершенствованному способу уменьшения и/или удаления восстанавливающих перманганат соединений (ВПС) карбоновых кислот С3-8 и С2-12 алкилйодидных соединений, образующихся при карбонилировании способного к карбонилированию реагента, выбранного из группы, состоящей из метанола, метилацетата, метилформиата, диметилового эфира и их смесей, в товарную уксусную кислоту, в котором продукты указанного карбонилирования включают летучую фазу, которую перегоняют, получая очищенную товарную уксусную кислоту и первый отгон, включающий метилйодид, воду и, по меньшей мере, одно ВПС, где усовершенствование включает стадии: (а) разделения полученного первого отгона на легкую и тяжелую фазы с последующей дистилляцией по меньшей мере части легкой фазы для получения второго дистиллатного потока, включающего метилйодид, диметиловый эфир и указанное по меньшей мере одно ВПС, который направляют на следующую стадию дистилляции, где в качестве дистиллата образуется поток, содержащий ВПС; (b) добавления диметилового эфира в питание указанного потока, содержащего ВПС, и экстракции этого потока водой для образования первого рафината и первого водного экстрактного потока, содержащего указанное по меньшей мере одно ВПС; и (с) экстракции первого рафината водой для образования второго рафината и второго водного экстрактного потока, содержащего указанное по меньшей мере одно ВПС.

Изобретение относится к усовершенствованному способу получения карбоновой кислоты и/или сложного эфира спирта и карбоновой кислоты, включающему карбонилирование спирта и/или его реакционноспособного производного монооксидом углерода в жидкой реакционной смеси в реакторе карбонилирования, причем упомянутая жидкая реакционная смесь содержит упомянутый спирт и/или его реакционноспособное производное, катализатор карбонилирования, алкилгалогенидный сокатализатор, где упомянутый катализатор включает по меньшей мере один из родия или иридия, который координирован с полидентатным лигандом, где упомянутый полидентатный лиганд обладает углом раскрытия по меньшей мере 145° или образует жесткий Rh или Ir металлолигандный комплекс, и упомянутый полидентатный лиганд включает по меньшей мере две координационные группы, которые в качестве координационного атома по меньшей мере двух координационных групп независимо содержат Р, N, As или Sb, при этом в данном способе поддерживают концентрацию водорода при мольном соотношении водород: СО по меньшей мере 1:100 и/или монооксид углерода, направляемый реактор карбонилирования, содержит по меньшей мере 1 мол.% водорода, и в котором диапазон гибкости катализатора составляет менее 40°.

Изобретение относится к усовершенствованному способу получения уксусной кислоты, включающему следующие стадии: (а) взаимодействие монооксида углерода, по меньшей мере, с одним реагентом, выбранным из группы, состоящей из метанола, метилацетата, метилформиата и диметилового эфира и их смеси в реакционной среде, содержащей воду, йодистый метил и катализатор для получения реакционного продукта, содержащего уксусную кислоту; (b) осуществление газожидкостного разделения указанного реакционного продукта для получения легкоиспаряющейся фазы, содержащей уксусную кислоту, воду и йодистый метил, и менее легкоиспаряющейся фазы, содержащей указанный катализатор; (с) перегонку указанной легкоиспаряющейся фазы для получения очищенного продукта уксусной кислоты и первого верхнего погона, содержащего воду, метилацетат и йодистый метил; (d) фазовое разделение указанного первого верхнего погона для получения первой жидкой фазы, содержащей воду, и второй жидкой фазы, содержащей йодистый метил и метилацетат; и (е) добавление диметилового эфира прямо или косвенно в декантатор легких фракций фазового разделения указанного первого верхнего погона в количестве, эффективном для увеличения разделения первого верхнего погона для образования первой и второй жидких фаз.
Наверх