Одностадийный способ получения изопрена

Изобретение относится к одностадийному способу газофазного получения изопрена, включающему взаимодействие формальдегида с изобутиленом, третбутиловым спиртом, метилтретбутиловым эфиром, этилтретбутиловым эфиром или их смесью с изобутиленом в присутствии катализатора, содержащего гетерополикислоту или ее соли, и характеризующемуся тем, что взаимодействие проводят в присутствии твердофазного катализатора, содержащего от 0,1 до 90 мас.% гетерополикислоты или ее соли на пористом носителе состава Al2O3·(10-300)SiO2, причем процесс осуществляют в условиях газофазной конденсации при 200-450°С, при атмосферном давлении, при скорости подачи сырья 0,5-15 г/г·ч и массовом отношении изобутилена к формальдегиду, равном (1-20):1. Применение настоящего способа позволяет обеспечить высокий выход и селективность получения изопрена при высокой степени конверсии исходного сырья. 2 з.п. ф-лы, 1 табл.

 

Настоящее изобретение относится к газофазному способу получения изопрена, в частности к получению изопрена из изобутилена, третбутилового спирта, метилтретбутилового эфира, этилтретбутилового эфира и формальдегида.

Изопрен используется, главным образом, в качестве мономера при синтезе синтетических каучуков. Изопреновый каучук является типичным каучуком общего назначения, и потребности в нем постоянно растут. В связи с этим, простой и эффективный способ получения изопрена представляет огромное значение для промышленности.

В промышленности предлагаются различные способы получения изопрена: 1) из изобутилена и формальдегида, 2) двухстадийным дегидрированием изопентана, 3) дегидрированием изоамиленов, 4) димеризацией пропилена, 5) извлечением изопрена из фракции С5 пиролиза нефтепродуктов. Наиболее привлекательным является получение изопрена путем конденсации изобутилена с формальдегидом в связи с тем, что оба данных реагента производятся на основе первичных продуктов переработки нефти и попутного газа.

Известны способы, основанные на газофазном процессе получения изопрена в присутствии гетерогенного катализатора, например, US 4000209, 1976 и US 4014952, 1977. В качестве катализаторов в этих процессах используют окись алюминия, алюмосиликат, фосфорную кислоту с оксидом хрома и марганца, алюмосиликат с нанесенным оксидом вольфрама и фосфатом меди, нанесенный на силикагель. Недостатком указанных способов является невысокая селективность процесса с образованием большого количества побочных продуктов. Кроме того, используемые катализаторы быстро дезактивируются и имеют низкий межрегенерационный пробег (несколько часов работы).

Известны также способы, относящиеся к одностадийному жидкофазному процессу получения изопрена: US 3890404, 1975 и US 7442844, 2008. В данных патентах в качестве катализаторов используются хлориды железа, алюминия, олова, фосфорная кислота, органические кислоты. Недостатки данных способов связаны с трудностями отделения катализатора от продуктов реакции и коррозия оборудования. Это обуславливает необходимость разработки новых более эффективных катализаторов и процессов с их использованием.

Наиболее близким по технической сущности и достигаемому результату является одностадийный способ получения изопрена путем взаимодействия формальдегида с изобутиленом в жидкой фазе при 110-280°С в присутствии катализатора, в качестве которого используют гетерополикислоты и их соли (JP 59-013736, 1984).

Недостатком известного способа является трудность отделения катализатора от целевого продукта и недостаточный выход изопрена.

Задачей настоящего изобретения является разработка способа, позволяющего обеспечить высокий выход и селективность синтеза изопрена. Поставленная задача решается описываемым способом получения изопрена, включающим взаимодействие формальдегида с изобутиленом в газовой фазе в присутствии твердофазного катализатора, содержащего гетерополикислоту или ее соли в количестве от 0,1 до 90 мас.% на пористом носителе состава Al2O3·(10-300)SiO2.

Предпочтительно, в качестве гетерополикислоты катализатор содержит кислоты, выбранные из ряда: 12-фосфорвольфрамовая, 12-вольфрамокремниевая, 12-фосформолибденовая, 12-молибденокремниевая, или соли упомянутых кислот.

Заявленный процесс может быть проведен в условиях газофазной конденсации при 200-450°С, при атмосферном давлении, при скорости подачи сырья 0.5-15 г/г·ч и массовом отношении изобутилена к формальдегиду, равном (1-20):1, возможно, в присутствии газа-разбавителя.

Преимущественно, процесс проводят в проточном реакторе в условиях непрерывного протока в реакторе с неподвижным слоем катализатора в условиях газовой фазы. Заявленный процесс может быть проведен с использованием третбутилового спирта, метилтретбутилового и этилтретбутилового эфира.

Результатом осуществления способа в объеме признаков п.1 является высокий выход и селективность образования изопрена при высокой стабильности работы катализатора во времени. Это достигается за счет сочетания свойств гетерополикислоты и носителя, при взаимодействии которых создается оптимальная кислотность в сочетании с высокой доступностью кислотных центров для реагентов. При осуществлении способа при параметрах, включенных в зависимые п.2-3, достигается максимальные выход и селективность реакции получения изопрена.

Предлагаемый способ конденсации формальдегида с изобутиленом в общем виде осуществляют следующим образом. Предварительную подготовку катализатора производят путем его нагревания в токе инертного газа (азот, гелий) до 350°С в течение 1 ч и прокаливания при этой температуре в течении 30 мин, затем реактор охлаждают до температуры реакции. Формалин с изобутиленом, третбутанолом, МТБЭ или этилтретбутиловым эфиром подают в реактор проточного типа с неподвижным слоем катализатора. На выходе из реактора полученные продукты разделяют на жидкие и газообразные, компонентный состав определяют хроматографическим методом. Количество формальдегида определяют путем титрования кислотой водного раствора, иного сульфитом натрия.

Нижеследующие примеры иллюстрируют изобретение, но не ограничивают его.

Пример 1.

Катализатор, состоящий из носителя состава Al2O3·160SiO2 с 20 мас.% 12-фосфорвольфрамовой кислоты, помещают в проточный реактор, продувают азотом при температуре 350°С в течение 1 ч, затем снижают температуру до 300°С и подают формалин со скоростью 0,75 г/г·ч (содержание формальдегида 37%) и изобутилен со скоростью 2,23 г/г·ч при соотношении изобутилен/формальдегид=4,3 и при атмосферном давлении. Реакцию проводят в течение 3-х часов. На выходе из реактора получают изопрен с выходом на превращенный формальдегид 66% при конверсии формальдегида 55% и с выходом на превращенный изобутилен 84% при конверсии изобутилена 9,7%. Непрореагировавший формальдегид и изобутилен направляют на рецикл. Результаты эксперимента представлены в таблице.

Пример 2.

Процесс ведут как в примере 1, отличие состоит в том, что в качестве катализатора используют чистую 12-фосфорвольфрамовую кислоту без носителя (по прототипу). Показатели процесса представлены в таблице.

Сравнение примеров 1 и 2 иллюстрирует преимущества предлагаемого способа получения изопрена из изобутилена и формальдегида по сравнению с известным способом (прототипом).

Пример 3.

Процесс ведут как в примере 1, отличие состоит в том, что в качестве катализатора используют 90 мас.% 12-фосфорвольфрамовой кислоты на носителе состава Al2O3·160SiO2. Показатели процесса представлены в таблице.

Пример 4.

Процесс ведут как в примере 1, отличие состоит в том, что в качестве катализатора используют 0,5 мас.% 12-фосфорвольфрамовой кислоты на носителе состава Al2O3·300SiO2. Показатели процесса представлены в таблице.

Пример 5.

Процесс ведут как в примере 1, отличие состоит в том, что в качестве катализатора используют 12-фосфорвольфрамовую кислоту на носителе состава Al2O3·10SiO2. Показатели процесса представлены в таблице.

Пример 6.

Процесс ведут как в примере 1, отличие состоит в том, что в качестве катализатора используют 12-фосформолибденовую кислоту на носителе состава Al2O3·160SiO2. Показатели процесса представлены в таблице.

Пример 7.

Процесс ведут как в примере 1, отличие состоит в том, что в качестве катализатора используют 12-вольфрамокремниевую кислоту на носителе состава Al2O3·160SiO2. Показатели процесса представлены в таблице.

Пример 8.

Процесс ведут как в примере 1, отличие состоит в том, что в качестве катализатора используют соль 12-фосфорвольфрамовой кислоты состава Cs2.5H0.5PW12O40 на носителе состава Al2O3·160SiO2. Показатели процесса представлены в таблице.

Примеры 3-8 иллюстрируют возможность варьирования состава катализатора, содержащего гетерополикислоты на носителе, в широких пределах.

Пример 9.

Аналогичен примеру 1, отличие состоит в том, что осуществляют подачу 0,38 г/г·ч формалина и 1,8 г/г·ч изобутилена при соотношении изобутилен/формальдегид=6,7. Показатели процесса представлены в таблице.

Пример 10.

Аналогичен примеру 1, отличие состоит в том, что осуществляют подачу 0,75 г/г·ч формалина и 0,52 г/г·ч изобутилена при соотношении изобутилен/формальдегид=1. Показатели процесса представлены в таблице.

Пример 11.

Аналогичен примеру 1, отличие состоит в том, что осуществляют подачу 0,19 г/г·ч формалина и 2,25 г/г·ч изобутилена при соотношении изобутилен/формальдегид=18. Показатели процесса представлены в таблице.

Пример 12.

Аналогичен примеру 1, отличие состоит в том, что осуществляют подачу 2,03 г/г·ч формалина и 5,65 г/г·ч изобутилена при соотношении изобутилен/формальдегид=4,3. Показатели процесса представлены в таблице.

Пример 13.

Аналогичен примеру 1, отличие состоит в том, что осуществляют подачу 0,38 г/г·ч формалина, 0,9 г/г·ч изобутилена и 6 н·мл/г·мин азота при соотношении изобутилен/формальдегид=3,4. Показатели процесса представлены в таблице.

Пример 14.

Аналогичен примеру 9, отличие состоит в том, что конденсацию проводят при температуре 450°С. Показатели процесса представлены в таблице.

Пример 15.

Аналогичен примеру 9, отличие состоит в том, что конденсацию проводят при температуре 200°С. Показатели процесса представлены в таблице.

Примеры 9-15 иллюстрируют возможность осуществления способа получения изопрена в широкой области варьирования условий реакции.

Пример 16.

Процесс ведут как в примере 1, отличие состоит в том, что в качестве катализатора используют 33 мас.% 12-фосфорвольфрамовой кислоты на носителе состава Al2O3·80SiO2. Подача формалина составляет 0,38 г/г·ч, подача изобутилена составляет 2,2 г/г·ч. Показатели процесса представлены в таблице.

Пример 17.

Процесс ведут как в примере 16, отличие состоит в том, что измерение параметров процесса происходит через 30 часов после начала реакции. Показатели процесса представлены в таблице.

Сравнение результатов, приведенных в примерах 16-17, указывает на высокую стабильность работы катализатора во времени.

Пример 18.

Аналогичен примеру 1, отличие состоит в том, что осуществляют подачу 0,38 г/г·ч формалина, 1,5 г/г·ч изобутилена и 0,42 г/г·ч МТБЭ при соотношении (изобутилен+МТБЭ)/формальдегид=6,7. Показатели процесса представлены в таблице.

Пример 19.

Аналогичен примеру 1, отличие состоит в том, что осуществляют подачу 0,28 г/г·ч формалина и 2,2 г/г·ч третбутанола при соотношении третбутанол/формальдегид=9. Показатели процесса представлены в таблице.

Примеры 18 и 19 иллюстрируют возможность осуществления способа получения изопрена при частичной или полной замене изобутилена на другое изобутилен содержащее сырье.

Таким образом, все примеры указывают на то, что осуществление конденсации в присутствии твердого катализатора, содержащего гетерополикислоту или ее соли на алюмосиликатном пористом носителе, позволяет достигнуть высоких выходов и селективностей образования изопрена и стабильной работы катализатора. Предлагаемый способ осуществляется в широкой области варьирования параметров катализатора и процесса.

1. Одностадийный способ газофазного получения изопрена, включающий взаимодействие формальдегида с изобутиленом, третбутиловым спиртом, метилтретбутиловым эфиром, этилтретбутиловым эфиром или их смесью с изобутиленом в присутствии катализатора, содержащего гетерополикислоту или ее соли, отличающийся тем, что взаимодействие проводят в присутствии твердофазного катализатора, содержащего от 0,1 до 90 мас.% гетерополикислоты или ее соли на пористом носителе состава Al2O3·(10-300)SiO2, причем процесс осуществляют в условиях газофазной конденсации при 200-450°С, при атмосферном давлении, при скорости подачи сырья 0,5-15 г/г·ч и массовом отношении изобутилена к формальдегиду, равном (1-20):1.

2. Способ по п.1, отличающийся тем, что в качестве гетерополикислоты катализатор содержит кислоты, выбранные из ряда: 12-фосфорвольфрамовая, 12-вольфрамокремниевая, 12-фосформолибденовая, 12-молибденокремниевая, или соли упомянутых кислот.

3. Способ по п.1, отличающийся тем, что процесс проводят в условиях непрерывного потока в реакторе с неподвижным слоем катализатора в условиях газовой фазы.



 

Похожие патенты:

Изобретение относится к способу совместного получения (С60-Ih)[5,6]фуллеро[2',3':1,9]циклопропана и 1'(2')а-гомо(С60-Ih)[5,6]фуллерена общей формулы (1) и (2) взаимодействием С60-фуллерена с эфирным раствором диазометана (CH2N2) и последующим превращением образующегося фуллеропиразолина в соединения (1) и (2), характеризующемуся тем, что обе реакции проводят одновременно при взаимодействии С60-фуллерена с диазометаном в толуоле в присутствии палладиевого катализатора (Pd(acac)2), взятыми в мольном соотношении С60:диазометан:Pd(acac) 2 = 0,01:(0,01-0,03):(0,0015-0,0025), предпочтительно 0,01:0,02:0,002, при температуре 40°С в течение 0,5-1,5 ч.

Изобретение относится к способу получения изопрена из формальдегида и изобутенсодержащей С4-фракции, а также, возможно частично, из трет-бутанола в присутствии воды и кислотного(ых) катализатора(ов) с помощью жидкофазного синтеза и последующего жидкофазного разложения полупродуктов - предшественников изопрена, характеризующемуся тем, что используют две стадии синтеза, на первой стадии контактируют изобутенсодержащую С4 -фракцию, формальдегид и большое количество воды, из выводимого органического потока последовательно отгоняют как минимум С 4-углеводороды и поток трет-бутанола, остаток, возможно, после отгонки от высококипящих побочных продуктов и введения инертного растворителя подают снизу в вертикальную систему разложения предшественников изопрена, а поток трет-бутанола предпочтительно частично подают в среднюю и, возможно, верхнюю часть указанной системы разложения и его остальное количество подают на вторую стадию синтеза, где контактируют с дополнительным количеством формальдегида, водно-кислотным раствором предпочтительно с первой стадии синтеза, возможно, дополнительным количеством трет-бутанола и возвратным изобутеном, поток(и) со второй стадии синтеза подают снизу в вертикальную систему разложения, сверху нее или соединенного с ней сепаратора-отстойника выводят и подают на разделение паровой поток, содержащий изопрен, изобутен и частично воду, выводят жидкий водно-кислотный поток и предпочтительно выводят жидкий раствор высококипящих побочных продуктов, причем указанный водно-кислотный поток, возможно, после дополнительного экстрагирования из него высококипящих побочных продуктов рециркулируют как минимум на первую стадию синтеза и предпочтительно частично в систему разложения предшественников изопрена.

Изобретение относится к способу получения трицикло[4.2.1.0 2,5]нонан-3-спиро-1'-бутана общей формулы (1) характеризующемуся тем, что 3-метилентрицикло[4.2.1.0 2,5]нонан подвергают взаимодействию с триэтилалюминием Et3Al в присутствии катализатора цирконацендихлорида Cp2ZrCl2 в мольном соотношении 3-метилентрицикло[4.2.1.0 2,5]нонан: Et3Al:Cp2ZrCl2 =10:(10-14):(0.4-0.6) в атмосфере аргона при температуре 20°С и нормальном давлении в гексане, в течение 5-7 ч с последующим добавлением при -10°С диэтилового эфира в объеме, равном взятому гексану, трифенилфосфина Ph3P и ацетилацетоната палладия Pd(acac)2 в эквимольном к Cp2ZrCl 2 количестве, затем прибавляют свежеперегнанный аллилхлорид в трехкратном избытке на взятый Et3Al, температуру доводят до комнатной и перемешивают еще 5 ч.
Изобретение относится к способу переработки побочных продуктов жидкофазного синтеза изопрена из изобутилена и формальдегида или формальдегидсодержащих продуктов, в частности 4,4-диметил-1,3-диоксана в интервале температур 400-480°С в присутствии водяного пара на алюмосиликатсодержащем катализаторе с предварительным нагревом побочных продуктов до температуры 400-550°С в присутствии водяного пара, характеризующемуся тем, что процесс проводят при начальной температуре на 5-40°С ниже и конечной температуре на 5-40°С выше средней температуры контактирования при постепенном повышении температуры от начальной до конечной и при постоянном снижении объемной скорости подачи сырья вначале цикла контактирования на 3-15% выше, а в конце цикла на 3-15% ниже среднецикловой объемной скорости подачи сырья.

Изобретение относится к способу получения кумола, характеризующемуся тем, что включает взаимодействие бензола с ацетоном и водородом в присутствии каталитической композиции, включающей один или более чем один цеолит в кислотной форме или преимущественно кислотной форме, медь и, возможно, один или более чем один элемент, выбираемый из элементов групп IIIA, VIB, VIIB.

Изобретение относится к способу получения изопрена путем жидкофазного взаимодействия формальдегида и, возможно, веществ, являющихся источником формальдегида, с трет-бутанолом, возможно, изобутиленом или веществами, являющимися источником изобутилена, и, возможно, полупродуктами - предшественниками изопрена в присутствии сильного кислотного катализатора и воды с использованием мольного избытка трет-бутанола (изобутилена) при повышенных температуре и давлении, обеспечивающих переход изопрена в паровую фазу с последующим его выделением, осуществляемым с подводом тепла в реакционную зону, включающим циркуляцию и подогрев образующегося в процессе кислого водного слоя, характеризующемуся тем, что подвод тепла осуществляют только за счет циркуляции подогреваемого кислого водного слоя, при этом слой подогревают до температуры ниже температуры его кипения, а количество циркулирующего кислого водного слоя должно обеспечивать перепад температуры по высоте реакционной зоны не более 5°С.

Изобретение относится к способу получения изопрена путем жидкофазного взаимодействия формальдегида и изобутилена или веществ, являющихся их источниками, например 4,4-диметил-1,3-диоксана и триметилкарбинола, в присутствии водного раствора кислотного катализатора, осуществляемому при повышенной температуре и давлении с получением продуктов реакции и балансового количества воды в виде парового потока, с последующим охлаждением, конденсацией и разделением на водный и органический слои, с переработкой органического слоя, включающей выделение рециклового изобутилена, целевого изопрена, рециклового триметилкарбинола и высококипящего остатка, с переработкой водного слоя, включающей выделение органических продуктов, в том числе триметилкарбинола, с выводом жидкого потока водного раствора катализатора на экстракцию, с последующим возвратом в зону синтеза, при этом выделение триметилкарбинола из продуктов синтеза осуществляют путем экстракции водой с последующим выделением из полученных водных растворов.

Изобретение относится к способу получения пара-ксилола избирательным метилированием толуола, включающему взаимодействие смеси реагентов, содержащей толуол, метанол и добавленную воду, с катализатором на основе модифицированного оксидом цеолита ZSM-5 в проточном реакторе и со временем взаимодействия между смесью реагентов и катализатором меньшим, чем 1 секунда, при этом способ осуществляют при температуре от 250 до 500°С.

Изобретение относится к способу получения изопрена. .

Изобретение относится к способу получения изопрена путем жидкофазного взаимодействия формальдегида и изобутилена или веществ, являющихся их источниками, например 4,4-диметил-1,3-диоксана и триметилкарбинола, в присутствии водного раствора кислотного катализатора, осуществляемому при повышенной температуре и давлении с получением продуктов реакции и балансового количества воды в виде парового потока, с последующим охлаждением, конденсацией и разделением на водный и органический слои, с переработкой органического слоя, включающей выделение рециклового изобутилена, целевого изопрена, рецикловых триметилкарбинола и предшественников изопрена, фракции метилдигидропирана, фракции углеводородов C8-С 10 и карбонильных соединений С5Н 10О и высококипящего остатка, с переработкой водного слоя, включающей выделение органических продуктов, с выводом жидкого потока водного раствора катализатора на экстракцию, с последующим возвратом в зону синтеза, при этом выделение триметилкарбинола, метилдигидропирана и предшественников изопрена, фракции углеводородов C8-С10 и карбонильных соединений С5Н10О осуществляют путем азеотропной ректификации с добавлением воды в количестве, необходимом для образования азеотропа, с отгоняемым в колонне продуктом.
Изобретение относится к способу отделения и освобождения катализатора в реакции превращения кислородсодержащих соединений в олефины, который включает стадии: (а) превращения кислородсодержащих соединений в олефины во флюидизированной зоне в реакторе в присутствии катализатора типа молекулярных сит, имеющего углеродсодержащие отложения, где указанные кислородсодержащие соединения выбирают из группы, состоящей из метанола, этанола, диметилового эфира или их смеси; (b) отбора из реактора исходящего потока, содержащего олефины, причем исходящий поток захватывает часть катализатора, имеющего углеродсодержащие отложения; (с) отделения части катализатора от исходящего потока путем контактирования исходящего потока с нейтрализованной жидкой средой гашения в колонне гашения, чтобы образовать поток, содержащий катализатор; при этом нейтрализацию среды гашения проводят в отдельной секции после отделения части катализатора; и (d) сжигания в установке для сжигания углеродсодержащих отложений, которые находятся в той части катализатора, которая находится в потоке, содержащем катализатор.

Изобретение относится к способу производства базового масла, характеризующемуся тем, что исходный сырьевой материал, состоящий из по меньшей мере одного спирта, выбранного из группы, состоящей из первичных и вторичных насыщенных и ненасыщенных С1-С40-одноатомных спиртов, диолов и полиолов, конденсируют в присутствии 1-20 мас.% основного катализатора, выбранного из гидроксидов и алкоксидов щелочных и щелочно-земельных металлов и оксидов металлов, в сочетании с 0,05-1 мас.% сокатализатора, содержащего соль хрома (III), марганца (II), железа (II), кобальта (II), свинца (II) или палладия, или оксида олова или оксида цинка, при температуре от 200 до 300°С, продукт конденсации подвергают гидродезоксигенированию в присутствии катализатора гидродезоксигенирования при давлении водорода от 0,1 до 20 МПа, при температуре от 100 до 500°С, и затем подвергают гидроизомеризации в присутствии катализатора изомеризации при давлении водорода от 0,1 до 20 МПа, при температуре от 100 до 500°С.

Изобретение относится к способу переработки смесей алифатических спиртов, содержащих глицерин в количестве 27-86 мас.%, путем проведения реакции кросс-конденсации при температуре 300-350°С, давлении инертного газа 1-5 МПа, удельной скорости подачи смеси алифатических спиртов на катализатор 0,4-0,8 дм 3/ч·дм3кат, причем в качестве катализатора используют оксид вольфрама, оксид рения, нанесенные на -оксид алюминия при следующем соотношении компонентов, мас.%: оксид вольфрама 1,2-6,7, оксид рения 0,9-1,3, -оксид алюминия - остальное.

Изобретение относится к способу производства базового масла, характеризующемуся тем, что исходный сырьевой материал, состоящий из по меньшей мере одного альдегида и/или кетона, выбранного из группы, состоящей из С1-С40-альдегидов, С3-С79-кетонов, С2-С40-гидроксиальдегидов и их смесей, конденсируется в присутствии катализатора альдольной конденсации с гидроксидом щелочного или щелочноземельного металла в качестве катализатора альдольной конденсации при температуре от 80 до 400°С, продукт конденсации подвергается гидродезоксигенированию в присутствии катализатора гидродезоксигенирования при давлении водорода от 0,1 до 20 МПа, при температуре от 100 до 500°С и затем подвергается гидроизомеризации в присутствии катализатора изомеризации при давлении водорода от 0,1 до 20 МПа, при температуре от 100 до 500°С.

Изобретение относится к способу получения легких олефинов, представляющих собой этилен и пропилен, характеризующемуся наличием стадий: a) контактирования содержащего метанол исходного сырья, содержащего в количестве от 65 до 100 мас.% метанола, в зоне реактора конверсии метанола с катализатором конверсии метанола и при реакционных условиях, содержащих температуру от 200°С до 300°С, давление от 200 до 1500 кПа и массовой среднечасовой скорости подачи от 2 до 15 час-1, чтобы получить поток метанола из зоны реактора конверсии, содержащий диметиловый эфир и воду; b) удаления по меньшей мере части воды из потока метанола зоны реактора конверсии метанола с образованием первого потока процесса, содержащего диметиловый эфир и имеющего пониженное содержание воды, и второго потока процесса, содержащего метанол и имеющий повышенное содержание воды по сравнению с указанным первым потоком процесса; c) направления части или всего второго потока процесса к промывной колонне; d) контактирования сырья, содержащего по меньшей мере часть первого потока процесса в зоне реактора конверсии кислородсодержащих соединений с катализатором конверсии кислородсодержащих соединений при реакционных условиях конверсии кислородсодержащих соединений, содержащих температуру от 200°С до 700°С и при абсолютном давлении реакции от 240 до 580 кПа, чтобы обеспечить превращение по меньшей мере части данного сырья в поток продуктов конверсии кислородсодержащих соединений, содержащих легкие и тяжелые олефины; и e) направления потока продуктов конверсии кислородсодержащих соединений к промывной колонне, в которой второй поток процесса промывает поток продуктов конверсии кислородсодержащих соединений, чтобы получить промытый поток олефинов, для дальнейшего использования в реакции, и поток отходов, содержащий кислородсодержащие соединения и воду.
Изобретение относится к двум вариантам способа селективного получения углеводородов, пригодных для дизельного топлива, один из которых характеризуется тем, что в данном способе есть стадии, на которых проводится реакция декарбоксилирования/декарбонилирования, посредством введения сырья, происходящего из возобновляемых источников и содержащего в себе С8-С24 жирные кислоты, сложные эфиры C8-C24 жирных кислот, триглицериды C8-C24 жирных кислот или соли металлов С8-С24 жирных кислот или их сочетание, и, при желании, растворитель или смесь растворителей, вводят во взаимодействие с гетерогенным катализатором, который, при необходимости, предварительно обработан водородом при температуре 100-500°С перед вступлением в контакт с сырьевым материалом, который содержит в себе от 0,5% до 20% одного или нескольких металлов, принадлежащих к группе VIII, выбранных из платины, палладия, иридия, рутения и родия или от 2% до 55% никеля на носителе, выбранном из оксидов, мезопористых веществ, углеродсодержащих носителей и структурных носителей катализатора, при температуре 200-400°С и давлении от 0,1 МПа до 15 МПа, для получения смеси углеводородов в качестве продукта.
Изобретение относится к двум вариантам способа селективного получения углеводородов, пригодных для дизельного топлива, один из которых характеризуется тем, что в данном способе есть стадии, на которых проводится реакция декарбоксилирования/декарбонилирования, посредством введения сырья, происходящего из возобновляемых источников и содержащего в себе С8-С24 жирные кислоты, сложные эфиры C8-C24 жирных кислот, триглицериды C8-C24 жирных кислот или соли металлов С8-С24 жирных кислот или их сочетание, и, при желании, растворитель или смесь растворителей, вводят во взаимодействие с гетерогенным катализатором, который, при необходимости, предварительно обработан водородом при температуре 100-500°С перед вступлением в контакт с сырьевым материалом, который содержит в себе от 0,5% до 20% одного или нескольких металлов, принадлежащих к группе VIII, выбранных из платины, палладия, иридия, рутения и родия или от 2% до 55% никеля на носителе, выбранном из оксидов, мезопористых веществ, углеродсодержащих носителей и структурных носителей катализатора, при температуре 200-400°С и давлении от 0,1 МПа до 15 МПа, для получения смеси углеводородов в качестве продукта.
Изобретение относится к способу получения катализатора для превращения метанола в олефины. .
Изобретение относится к способу получения смеси разветвленных насыщенных углеводородов, характеризующемуся тем, что сырье, включающее по меньшей мере 20 мас.% ненасыщенных жирных кислот или эфиров жирных кислот со спиртами C1-C 5, указанные эфиры имеют общее число атомов углерода от 8 до 26, или их смеси, подвергают стадии скелетной изомеризации, за которой следует стадия деоксигенирования.

Изобретение относится к способу получения высококачественного насыщенного базового масла или компонента базового масла на основе углеводородов. .
Изобретение относится к производству катализаторов, а именно к производству катализаторов для процесса синтеза изопрена взаимодействием метилаля и изобутилена. .
Наверх