Способ получения окислов урана и тетрафторида кремния из тетрафторида обедненного урана

Изобретение может быть использовано в быстрых реакторах или для длительного хранения окислов урана. Тетрафторид обедненного урана смешивают с окисью кремния и прокаливают при температуре 600-650°С в трубчатой печи в атмосфере воздуха в течение 1-2 часов. Смесь реагентов готовят в мольном соотношении тетрафторида урана к окиси кремния (1,05-1,10):1 и подвергают обработке в дезинтеграторе, представляющем собой устройство из помещенных в общий корпус двух роторов с пальцами, расположенными по концентрическим окружностям, где каждый ряд одного ротора входит между рядами другого, вращающимися навстречу друг другу при относительной скорости 5÷15 тыс. об/мин в течение 7-20 минут. После прокалки получают закись-окись урана, содержащую фтор в виде уранилфторида. Изобретение позволяет получать окислы урана, не загрязненные кремнием, 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области разработки экономически рентабельной технологии конверсии обедненного тетрафторида урана с получением окислов урана для длительного хранения или использования в быстрых реакторах, а также с попутным получением ценных фторсодержащих веществ. В частности, предлагается получение чистых оксидов урана и тетрафторида кремния путем взаимодействия UF4 и SiO2.

Известен процесс получения SiF4 взаимодействием SiO2 с безводным фтороводородом

SiO2+4HF→SiF4+2H2O

[См. US Patent 4382071. МПК C01B 33/107]

Реакция осуществляется в среде концентрированной H2SO4 для связывания образующейся воды. Процесс характеризуется большим избытком безводного фторида водорода, высокой коррозией оборудования, низким качеством получаемого SiF4, который может быть загрязнен серой и продуктами коррозии и примесями, находящимися в серной кислоте и фтороводороде.

Известен также метод получения оксидов урана и нерадиоактивных фторсодержащих соединений из UF4 и твердых оксидов следующих элементов - P, Ge, As, Tl, Sb, Ti, Zr, W и Nb при их смешении в стехиометрических количествах и температуре 400÷1000°C [См. US Patent 5918106. МПК C01B 9/00, C01G 43/01].

Наиболее близким аналогом предлагаемого нами способа является «Метод получения тетрафторида кремния из тетрафторида урана» - прототип [US Patent 5,888,468. МПК C01B 33/08; C01G 43/01].

Получение окислов урана и тетрафторида кремния из тетрафторида обедненного урана предполагается путем взаимодействия: UF4+SiO2→UO2+SiF4↑ при стехиометрическом соотношении компонентов и температуре 400÷750°C. UO2 может быть переведена в закись-окись урана путем окисления воздухом в этих условиях.

В примерах 1, 2 представлены попытки осуществления реакции в стехиометрическом соотношении в точном соответствии с прототипом

UF4+SiO2→UO2+SiF4

Пример 1. Были отобраны навески 1,526 г SiO2 и 7,990 г UF4, что соответствует мольному соотношению 1:1. Смешение твердых исходных реагентов происходило простым механическим перемешиванием в течение 10 мин. Смесь помещалась в лодочке в трубчатую никелевую печь при температуре ~650°C и выдерживалась 2 часа в атмосфере воздуха.

Степень превращения SiO2 в SiF4 составила ~61%. Остальное количество кремния - 39% осталось в твердом урансодержащем остатке.

Пример 2. Были взяты навески 0,975 г SiO2 и 8,775 г UF4 (мольное соотношение UF4:SiO2=1,761). Смешаны и обработаны в тех же условиях, что и в примере 1.

Степень превращения SiO2 в SiF4 в этих условиях была количественной. Однако урансодержащий продукт представлял собой в основном уранилфторид, т.к. в условиях избытка UF4 сверх стехиометрии процесс протекает по следующему уравнению:

Таким образом, из примера №1 следует, что при стехиометрическом соотношении UF4:SiO2=1:1 не наблюдается количественного перехода SiO2 в SiF4, это можно объяснить неравномерным смешением исходных твердых реагентов, вследствие их агрегации и, как следствие, больших, чем необходимо, размеров частиц UF4 и SiO2, что не может обеспечить количественного перехода UF4 в окислы, a SiO2 в тетрафторид, как это указано в прототипе.

При большом избытке UF4 (пример 2) осуществляется количественный переход SiO2→SiF4, однако большая часть урана переходит в уранилфторид UO2F2, который является весьма неподходящим продуктом для длительного хранения из-за слеживаемости и сильного коррозионного воздействия на конструкционные материалы.

Основным недостатком предложенного метода, по нашему мнению, является отсутствие возможности получить окислы урана, не загрязненные кремнием, при точно стехиометрическом соотношении компонентов и их простым смешением. В практических условиях невозможно перемешать исходные реагенты, поскольку они являются твердыми веществами. Поэтому возможен локальный дефицит фтора, что приведет к неполному превращению окисла кремния в тетрафторид кремния и образовавшиеся окислы урана будут загрязнены кремнием.

Техническим результатом предлагаемого изобретения является получение SiF4 и окислов урана, не загрязненных кремнием.

Технический результат достигается тем, что в известном способе получения окислов урана и тетрафторида кремния из тетрафторида урана путем его смешения с окисью кремния и прокалки при температуре 600-650°С в трубчатой печи в атомосфере воздуха в течение 1-2 часов смесь реагентов готовят в мольном соотношении тетрафторида урана к окиси кремния (1,05÷1,10):1, после чего ее дополнительно подвергают обработке в дезинтеграторе, представляющем собой устройство из помещенных в общий корпус двух роторов с пальцами, расположенными по концентрическим окружностям, где каждый ряд одного ротора входит между рядами другого, вращающимися навстречу друг другу при относительной скорости 5÷15 тыс. об/мин в течение 7-20 минут, и после прокалки получают закись-окись, содержащую фтор в виде уранилфторида.

Полученную закись-окись урана с содержанием 1,3 мас.% фтора в виде уранилфторида обесфторивают перегретым паром при 500-550°С в течение 1 часа при перемешивании твердой фазы.

В полученных твердых урансодержащих продуктах кремний отсутствует в любой форме, что указывает на количественное превращение SiO2 в летучий SiF4.

В твердом урансодержащем продукте уран находится в основном в виде двуокиси урана с примесью UO2F2, при продувке воздухом образуется смесь состава U3O8+UO2F2.

Принципиальная технологическая схема предлагаемого способа представлена на чертеже.

Исходные реагенты и продукты реакции подергались химическому анализу и ИК-спектроскопии.

Предлагаемый способ был проверен экспериментально.

Пример 3. 5,266 г UF4 и 0,956 г SiO2 (мольное соотношение 1,06:1) подвергли дезинтеграции в течение 15 мин со скоростью 15 тыс. об/мин. Смесь поместили в лодочку и выдерживали в трубчатой печи из никеля при 650°С в течение 1 часа. Процесс в основном протекал по реакции:

UF4+SiO2+5/3O2→1/3U3O8+SiF4

В закиси-окиси урана кремний отсутствует, наблюдается незначительное содержание уранилфторида - 1,3 мас.%, за счет избытка сверх стехиометрии UF4. SiF4 количественно поглощается в склянке с 20%-ным раствором KF. Выход SiO2 в SiF4 ~ 100%.

Обесфторивание U3O8 производилось перегретым водяным паром при 500-550°С. Окончательное содержание фтора в закиси-окиси урана не превышало 0,01 мас.%.

Пример 4. 15,347 г UF4 и 2,79 г SiO2 (мольное соотношение 1,05:1) подвергли дезинтеграции в течение 20 мин со скоростью 5 тыс. об/мин. Смесь поместили в лодочку и выдерживали 2 часа при температуре 650°С в слабом токе воздуха в трубчатой печи.

Полученная закись-окись урана содержала 1,3 мас.% фтора в виде уранилфторида, наблюдалось полное отсутствие кремния. SiF4 улавливался в поглотителе с раствором KF. Превращение SiO2 в SiF4 ~ 100%.

Обесфторивание закиси-окиси урана проводилось перегретым водяным паром при 500-550°С в течение 30 мин и позволило снизить содержание фтора в U3O8 до 0,02%.

Пример 5. 12,686 г UF4 и 2,549 г SiO2 (мольное соотношение 1,05:1) смешали и подвергли дезинтеграции со скоростью 7,5÷8,0 тыс. об/мин в течение 7 минут.

Смесь поместили в лодочку и выдерживали 1,5 часа при температуре ~ 650°С в трубчатой печи при слабом токе воздуха. Полученная U3O8 содержала 1,2-1,3% фтора в виде уранилфторида, кремний отсутствовал. Количественное поглощение SiF4 проходило с помощью водного раствора фторида калия.

Обесфторивание закиси-окиси урана до остаточного количества фтора 0,01 мас.% проводилось перегретым водяным паром в тех же условиях, что в примерах 3, 4.

1. Способ получения окислов урана и тетрафторида кремния из тетрафторида обедненного урана путем его смешения с окисью кремния и прокалки при температуре 600-650°С в трубчатой печи в атмосфере воздуха в течение 1-2 ч, отличающийся тем, что смесь реагентов готовят в мольном соотношении тетрафторида урана к окиси кремния (1,05-1,10):1, после чего ее дополнительно подвергают обработке в дезинтеграторе, представляющем собой устройство из помещенных в общий корпус двух роторов с пальцами, расположенными по концентрическим окружностям, где каждый ряд одного ротора входит между рядами другого, вращающимися навстречу друг другу при относительной скорости 5÷15 тыс. об/мин в течение 7-20 мин, и после прокалки получают закись-окись урана, содержащую фтор в виде уранилфторида.

2. Способ по п.1, отличающийся тем, что полученную закись-окись урана с содержанием 1,3 мас.% фтора в виде уранилфторида обесфторивают перегретым паром при 500-550°С в течение 1 ч при перемешивании твердой фазы.



 

Похожие патенты:

Изобретение относится к области технологии ядерных материалов, в частности к производству ядерного топлива с определенным содержанием изотопа 235U. .
Изобретение относится к области неорганической химии, в частности металлургии урана и производству соединений урана, и может быть использовано в химической и ядерной промышленности, например, для изготовления топливных сердечников ТВЭЛов ядерных реакторов.

Изобретение относится к области металлургии и может быть использовано в производстве ядерного топлива. .

Изобретение относится к области металлургии. .

Изобретение относится к способу переработки радиоактивных отходов топливных композиций, содержащих диоксид урана и полиэтилен, с получением товарной закиси-окиси урана, используемой для воспроизводства ядерного топлива.

Изобретение относится к способам переработки концентратов оксидов природного урана и может быть использовано в технологии получения материалов топливного цикла, в частности, для получения обогащенного урана.
Изобретение относится к области получения топлива для атомных электростанций и может быть использовано для получения оксидов урана высокой степени чистоты при переработке химического концентрата природного урана.

Изобретение относится к области неорганической химии, в частности металлургии урана и производству соединений урана, и может быть использовано в химической и ядерной технологиях.

Изобретение относится к области неорганической химии, в частности к металлургии урана и производству соединений урана, и может быть использовано в химической и ядерной технологиях.

Изобретение относится к области анализа материалов, а именно к способам определения примесей в соединениях урана, способных образовывать летучие фториды. .
Изобретение относится к неорганической химии, к получению фторидов неметаллов, а именно к способам получения тетрафторида кремния. .

Изобретение относится к технологии получения трихлорсилана - исходного сырья для синтеза высокочистого поликристаллического кремния (ПКК), который, в свою очередь, используется для производства солнечных элементов и полупроводников.

Изобретение относится к способу и установке для очистки трихлорсилана и тетрахлорида кремния. .

Изобретение относится к химическим технологиям, а именно к способам получения высокочистых трихлорсилана и тетрахлорсилана, используемых в кремнийорганической химии и применяемых в качестве исходного сырья в производстве полупроводникового кремния.
Изобретение относится к способу получения трихлорсилана (HSiCl3) каталитическим гидродегалогенированием тетрахлорида кремния (SiCl4) в присутствии водорода. .
Изобретение относится к способу каталитического гидродегалогенирования тетрахлорида кремния (SiCl4) в трихлорсилан (HSiCl 3) в присутствии водорода. .

Изобретение относится к технологии получения кремнийорганических соединений, а именно к способам разделения парогазовой реакционной смеси продуктов прямого синтеза трихлорсилана (ТХС), и может быть использовано в производстве полупроводникового кремния.

Изобретение относится к химической промышленности и может быть использовано в производстве поликристаллического кремния. .

Изобретение относится к установке, реактору и непрерывному способу получения высокочистого тетрахлорида кремния или высокочистого тетрахлорида германия посредством обработки подлежащих очистке тетрахлорида кремния или тетрахлорида германия, которые загрязнены, по меньшей мере, одним водородсодержащим соединением, при помощи холодной плазмы и последующей фракционной перегонки обработанной фазы

Изобретение относится к области разработки экономически рентабельной технологии конверсии обедненного тетрафторида урана с получением окислов урана для длительного хранения или использования в быстрых реакторах, а также с попутным получением ценных фторсодержащих веществ

Наверх