Оптоэлектронный фотоколориметр



Оптоэлектронный фотоколориметр
Оптоэлектронный фотоколориметр

 


Владельцы патента RU 2413201:

Государственное образовательное учреждение высшего профессионального образования "Сибирская государственная геодезическая академия" (ГОУВПО "СГГА") (RU)

Изобретение относится к технической физике и может быть использовано для анализа физических параметров жидких сред (нефтепродуктов, растительного масла, глицерина, соков, напитков, мочи, крови и т.п.). Оптоэлектронный фотоколориметр содержит задающий генератор, n светоизлучающих диодов, n измерительных фотоприемников, оптически связанных со светоизлучающими диодами, блок обработки фотоэлектрического сигнала и кювету, выполненную в виде шара с цилиндрической полостью, в которую установлен стержень с посеребренной отражающей поверхностью, прикрепленный стойками к стенкам цилиндра. Устройство помещено в корпус в стационарном положении, кроме того, введены воронка и кран для перекрывания и пропускания контролируемой жидкости в полости кюветы, которые крепятся одновременно к кювете и корпусу, и коммутатор для переключения излучения на одну из оптопар. Изобретение позволяет повысить чувствительность оптоэлектронного фотоколориметра и упростить его конструкцию. 2 ил.

 

Изобретение относится к технической физике и может быть использовано для анализа физических параметров жидких сред (нефтепродуктов, растительного масла, глицерина, соков, напитков, мочи, крови и т.п.).

Известен колориметр фотоэлектрический концентрационный типа КФК - 2МП [авторское свидетельство СССР № 541112. Кл. G01N 21/00. 1976], содержащий излучатель, светофильтр, кювету с исследуемым раствором, приемник оптического излучения (ПОИ), электронный блок обработки сигналов и измерительный прибор.

Недостатками устройства являются низкая чувствительность и неточность за счет несовершенства кюветы и кюветодержателя, когда для каждого последующего анализа необходимо извлекать кювету из прибора, заполнять ее очередной пробой, мыть и протирать оптические поверхности кювет от потеков исследуемой жидкости.

Наиболее близким по технической сущности к предлагаемому устройству является малогабаритный фотоэлектрический анализатор с оптическим каналом открытого типа [авторское свидетельство СССР №1693482. МПК 5 G01N 21/41. 1991], включающий в себя светоизлучающие диоды (СИД) как источники излучения, установленные по ходу излучения, ПОИ, электронный блок обработки фотоэлектрических сигналов и измерительный прибор. Также для создания малой чувствительности к внешней засветке и для построения эффективного измерительного усилия устройство обеспечено импульсным питанием.

Контролируемая жидкость в данном случае заливается в кювету, которая устанавливается в отверстие датчика.

Недостатками устройства являются низкая чувствительность и сложность конструкции, неточность за счет несовершенства кюветы и кюветодержателя, когда для каждого последующего анализа необходимо извлекать кювету из прибора, заполнять ее очередной пробой, мыть и протирать оптические поверхности кювет от потеков исследуемой жидкости.

Задачей настоящего изобретения является создание оптоэлектронного фотоколориметра повышенной чувствительности и упрощение его конструкции.

Оптоэлектронный фотоколориметр содержит задающий генератор, n светоизлучающих диодов, n измерительных фотоприемников, оптически связанных со светоизлучающими диодами, блок обработки фотоэлектрического сигнала, выход которого соединен с регистрирующим прибором, согласно изобретению кювета в нем выполнена в виде шара с цилиндрической полостью, в которую установлен стержень с посеребренной отражающей поверхностью, прикрепленный стойками к стенкам цилиндра, выше упомянутое устройство помещено в корпус в стационарном положении, кроме того, введены воронка и кран для перекрывания и пропускания контролируемой жидкости в полости кюветы, которые крепятся одновременно к кювете и корпусу, и коммутатор для переключения излучения на одну из оптопар.

На фиг.1 представлена блок-схема оптоэлектронного фотоколориметра, на фиг.2 - конструктивное выполнение датчика.

Оптоэлектронный фотоколориметр состоит из задающего генератора 1 (источника импульсного питания), коммутатора 2, светоизлучающих диодов СИД1 - 3, СИД2 - 4, СИД3 - 5, СИД4 - 6, контролируемого объекта 7, посеребренного стержня с отражающей поверхностью 8, измерительных фотоприемников 9, 10, 11, 12, блока обработки фотоэлектрического сигнала 13, регистрирующего прибора 14 (например, ЭВМ), кюветы в виде линзы-шара 16.

Оптоэлектронный фотоколориметр (фиг.2) включает в себя кювету в виде линзы-шара 16, полость которой представляет собой цилиндр, проходящий через ее центр, где стойками 20 закреплен посеребренный стержень с отражающей поверхностью 8, присоединенные к кювете стеклянную градуированную воронку 19, куда заливается контролируемая жидкость 7, и кран 17 для перекрывания и пропускания потока исследуемой жидкости 7, помещенные в корпус 18.

Устройство работает следующим образом. При заполнении цилиндрического отверстия кюветы 16 контролируемой жидкостью 7, она облучается n светодиодами с длиной волны 315-1200 нм, при этом устройство можно установить в технологический процесс, т.е. можно контролировать жидкие среды (соки, напитки, пиво и т.д.), протекающие через трубу по стрелке, указанной на фиг.2.

При включении, задающий генератор 1, вырабатывает прямоугольные импульсы 8-10 Гц. Разделенные импульсы через коммутатор-переключатель оптронов 2 подаются попеременно на светоизлучающие диоды 3, 4, 5, 6.

В первом положении коммутатора-переключателя 2 поток излучения светоизлучающего диода 3 фокусируется и отражается от посеребренного стержня с отражающей поверхностью 8 и далее попадает на измерительный фотоприемник 9. Затем сигналы поступают в БОФС - 13, где реализуется отношение сигналов компенсационного и измерительного потока. Сигнал отношения пропорционален величине коэффициента пропускания, оптической плотности жидких сред и прозрачных твердых тел, а также измеряется концентрация веществ в растворе, после предварительного определения потребителем градуировочной характеристики, сигналы подаются на регистрирующий прибор, по показанию которого судят об оптических параметрах жидких сред.

Во втором положении переключателя подключается вторая оптопара, и процесс протекает аналогично и так далее для остальных оптопар.

Предлагаемое устройство повышает точность измерения за счет двукратного прохождения излучения через исследуемый объект и стационарного расположения кюветы в виде линзы-шара 16, которую также можно установить в технологический процесс для автоматизации контроля оптических параметров жидких сред.

Оптоэлектронный фотоколориметр, содержащий задающий генератор, n светоизлучающих диодов, n измерительных фотоприемников, оптически связанных со светоизлучающими диодами, блок обработки фотоэлектрического сигнала, выход которого соединен с регистрирующим прибором, отличающийся тем, что введена кювета, выполненная в виде шара с цилиндрической полостью, в которую установлен стержень с посеребренной отражающей поверхностью, прикрепленный стойками к стенкам цилиндра, вышеупомянутое устройство помещено в корпус в стационарном положении, кроме того, введены воронка и кран для перекрывания и пропускания контролируемой жидкости в полости кюветы, которые крепятся одновременно к кювете и корпусу, и коммутатор для переключения излучения на одну из оптопар.



 

Похожие патенты:

Изобретение относится к количественному и/или качественному анализу веществ, в частности растворов. .

Изобретение относится к медицинской технике, а именно к кювете для взятия пробы жидкости организма и для представления образца пробы на анализ. .

Изобретение относится к области оптического приборостроения и может использоваться в приборах газового анализа, где требуется малогабаритность. .

Изобретение относится к области аналитической химии, в частности к анализу материалов с помощью оптических средств, и может быть использовано для идентификации и количественного определения малолетучих веществ в растворах методами инфракрасной спектрометрии.

Изобретение относится к технической оптике, в частности к осветительной технике, и может быть использовано для визуального контроля наличия посторонних включений в жидкости.

Изобретение относится к микротехнологии. .

Изобретение относится к измерительной технике, а именно к устройствам для определения концентрации газов. .

Изобретение относится к области оптического приборостроения, в частности, к аналитическим устройствам на базе капиллярных микрочипов для анализа флюоресцирующих веществ в растворе или растворов с оптическим поглощением в видимой и инфракрасной области и найдет широкое применение при контроле производств в пищевой, химической, биотехнологической, фармацевтической, целлюлозно-бумажной промышленности, а также в медицине для диагностики заболеваний и в научных исследованиях.

Изобретение относится к оптике рассеивающих сред и может быть использовано для экспресс-определения объемной концентрации капельной фазы воды и механических примесей в дизельном топливе, раздельно и совместно их концентрации, предельно допустимые стандартами

Изобретение относится к измерительной технике и может быть использовано для количественного определения энергии падающего ИК-излучения в составе фототермоакустического газоанализатора

Изобретение относится к химическим методам анализа почв и может быть использовано для прямого измерения концентрации подвижных минеральных форм фосфора в почвенных пробах при извлечении его углеаммонийным экстрагентом

Изобретение относится к технической физике и может быть использовано для контроля физическо-химических параметров жидких сред

Изобретение относится к оптическому картриджу и может быть использовано для определения количественного содержания анализируемого вещества в физиологической жидкости. Оптический картридж содержит корпус из оптически прозрачного материала с внутренней полостью, один торец корпуса снабжен входным отверстием во внутреннюю полость, которая разделена на сообщающиеся между собой входную зону и оптическую зону. Высота поперечного сечения внутренней полости в оптической зоне меньше высоты поперечного сечения полости во входной зоне, высоты внутренней полости оптической и входной зоны выбираются из условия возникновения капиллярного эффекта. Во входной зоне внутренней полости установлена, по меньшей мере, одна вставка из пористого материала с реагентом, а корпус имеет, по меньшей мере, одно отверстие для сообщения оптической зоны внутренней полости с внешней средой. Достигаемый при этом технический результат заключается в получении пользователем точного и надежного результата анализа. 4 з.п. ф-лы, 8 ил.

Изобретение относится к биодатчику для обнаружения конкретной молекулы внутри анализируемого вещества. Контейнер (11) биодатчика содержит нижнюю часть (1) с углублением (2), приспособленным для размещения жидкого образца, и покрывающую часть (3) для закрывания упомянутого углубления (2). Углубление (2) содержит поверхность (4) датчика. Нижняя часть (1) приспособлена, чтобы допускать проникновение света вдоль первой оптической траектории (5) для его отражения от поверхности (4) датчика и выход вдоль второй оптической траектории (6). Изобретение обеспечивает точность определения количества конкретных молекул в образце. 2 н. и 13 з.п. ф-лы, 4 ил.

Группа изобретений относится к кювете для хранения биологического образца, способу ее изготовления, а также к способу проверки подлинности кюветы и способу анализа биологического образца, такого как пробы крови, с использованием указанной кюветы. Кювета (10) изготовлена из формуемого материала, который содержит частицы (15a, 15b) в концентрации, находящейся в заданном диапазоне. Частицы (15a, 15b) распределены случайно с формированием уникального узора. Кроме того, частицы (15a, 15b) обладают поддающимися измерению физическими свойствами, что позволяет детектировать уникальный узор с применением методики детектирования, используемой для анализа биологического образца. Уникальные свойства, придаваемые случайно распределенными частицами (15a, 15b), делают копирование практически невозможным, поскольку распределить частицы согласно заданному узору сложнее, чем позволить им распределяться случайно. Достигаемый при этом технический результат заключается в повышении достоверности полученных результатов анализа. 5 н. и 6 з.п. ф-лы, 4 ил.

Группа изобретений относится к области медицины и может быть использована при проведении анализа тонких слоев, в частности монослоев клеток. Устройство для получения слоев, содержащих монослой из клеток, для анализа имеет двумерную матрицу из аналитических камер (45) и разветвленную конфигурацию входных каналов (25), соединенных с каждой из аналитических камер в матрице, для возможности заполнения аналитических камер в параллельном режиме. Каждая из аналитических камер имеет по существу планарную форму, имеющую высоту, меньшую, чем высота входных каналов, чтобы создавать слои текучей среды, содержащей клетки, когда камеры заполняют образцом текучей среды. Общая площадь каждой из аналитических камер варьирует между 100 и 2000 мм2 и/или высота аналитических камер составляет между 1 и 10 мкм, а входные каналы имеют глубину 10-200 мкм и ширину 50-1000 мкм. Группа изобретений относится также к способу изготовления данного устройства, способу получения и способу анализа слоев текучей среды, содержащих монослой из клеток, с использованием указанного устройства, а также к аналитической системе. Группа изобретений обеспечивает возможность проведения автоматизированного анализа образцов слоев, текучей среды, содержащих монослои из клеток, в картридже. 5 н. и 9 з.п. ф-лы, 6 ил., 1 пр.
Наверх