Способ ориентации осей космического аппарата в солнечно-орбитальную систему координат

Изобретение относится к управлению движением космического аппарата (КА) вокруг центра масс с использованием прибора, измеряющего направление на Солнце. При ориентации КА в солнечно-орбитальную систему координат (COCK) создаются условия для максимального использования солнечной энергии на КА с жестко закрепленными солнечными батареями. Способ заключается в том, что перед началом ориентации КА в бортовую вычислительную машину вводят параметры орбиты КА. Задают КА поисковую угловую скорость для обеспечения захвата Солнца полем обзора указанного прибора. Далее обнуляют составляющую этой угловой скорости вокруг связанной оси XКА, обеспечивая нахождение Солнца в поле обзора прибора. Поддерживая нулевую величину данной составляющей, разворотами КА вокруг двух других осей совмещают единичный вектор направления на Солнце со связанной осью YКА. В такой ориентации КА осуществляют угловое движение вокруг связанной оси ZKA в пределах угла ±10°, завершая ориентацию осей КА в COCK. Техническим результатом изобретения является возможность автоматически рассчитывать (на «солнечной» части витка) углы рассогласования текущего положения осей КА и осей COCK по результатам измерения только направления на Солнце и ориентировать исходя из этого КА в COCK. 2 ил.

 

Изобретение относится к космической технике и может быть использовано в системах управления движением (СУД) вокруг центра масс космических аппаратов (КА).

Из патентной литературы известны способы ориентации трех осей КА в орбитальную (подвижную) систему координат, использующие информацию не только прибора ориентации на Солнце, но обязательно информацию и от других измерительных приборов (см. а.с. №1655842, кл. B64G 1/00, от 02.12.1988 г.).

Наиболее близким из известных технических решений является выбранный в качестве прототипа способ ориентации осей космического аппарата в орбитальную систему координат, включающий запись в бортовую вычислительную машину параметров орбиты космического аппарата, задание космическому аппарату поисковой угловой скорости для обеспечения захвата Солнца полем обзора прибора ориентации, после чего снижение угловой скорости, обеспечивая нахождение Солнца в поле обзора прибора ориентации (см. пат. РФ №2247684 C2, кл. B64G 1/24, от 25.03.2003 г.).

Однако при этом способе для космических аппаратов, имеющих жестко закрепленные на корпусе солнечные батареи (СБ), используется ~60% солнечной энергии для заряда бортовых батарей (ББ) из-за того, что КА, сохраняя направление на центр Земли, отворачивает рабочую поверхность солнечных батарей от Солнца.

Задачей данного изобретения является создание способа управления движением космического аппарата вокруг своего центра масс, технический результат которого позволит на основании характеристик орбиты космического аппарата, введенных в его бортовую цифровую машину, и текущей информации, полученной от прибора, измеряющего направление на Солнце, на «солнечной» части витка, за минимально необходимое для этого время и с минимально необходимым расходом рабочего тела или кинетического момента его исполнительными органами обеспечить ориентацию связанных осей космического аппарата в солнечно-орбитальную систему координат (COCK), позволяющую непосредственно переориентировать оси КА в любую другую известную систему координат. При ориентации космического аппарата в солнечно-орбитальную систему координат достигаются условия для максимально возможного использования солнечной энергии на космическом аппарате с жестко закрепленными солнечными батареями.

Эта задача решается тем, что в способе ориентации осей космического аппарата, включающем запись в бортовую вычислительную машину параметров орбиты космического аппарата, задание космическому аппарату поисковой угловой скорости для обеспечения захвата Солнца полем обзора прибора ориентации, после чего снижение угловой скорости, обеспечивая нахождение Солнца в поле обзора прибора ориентации, В СООТВЕТСТВИИ С ИЗОБРЕТЕНИЕМ поддерживают величину угловой скорости, равную нулю, вокруг оси «XKA» космического аппарата, разворотами вокруг двух других осей совмещают единичный вектор направления на Солнце с осью «YKA» и, поддерживая такую ориентацию космического аппарата, осуществляют угловое движение вокруг оси «ZKA» в пределах угла ±10°, тем самым завершают ориентацию осей космического аппарата в солнечно-орбитальную систему координат.

При этом:

- ось «XKA» совпадает с осью «XCOCK» и лежит в плоскости орбиты КА, причем одну половину витка она направлена в сторону движения КА по орбите, а другую половину витка - в противоположную сторону;

- ось «YKA» совпадает с осью «YCOCK» и направлена на Солнце в течение всего витка;

- ось «ZKA» совпадает с осью «ZCOCK», дополняющей оси «XCOCK» и «YCOCK» до правой системы координат.

Далее изобретение поясняется с использованием чертежей, где на фигуре 1 показано расположение измерительных осей прибора в осях космического аппарата, а на фигуре 2 показаны результаты определения направления на Солнце и движение космического аппарата в приборных осях.

На фигуре 1 показан вариант расположения измерительных осей прибора ориентации на Солнце (ПОС) α и β, осей «XKA», «YKA», «ZKA» космического аппарата и единичного вектора направления на Солнце для неориентированного положения КА в пространстве.

где: α - измерительная ось ПОС, направленная по оси «ZKA»;

β - измерительная ось ПОС, направленная по оси «XKA»;

αПОС (t1, t2) - значение проекции единичного вектора направления на

Солнце на приборную ось α (ПОС) и ось «ZKA» КА в моменты времени t1, t2;

βПОС (t1, t2) - значение проекции единичного вектора направления на Солнце на приборную ось β (ПОС) и ось «XKA» КА в моменты времени t1, t2;

ΔφKA (t1, t2) - значение требуемого угла разворота КА вокруг оси «XKA» для ее совмещения с осью «XCOCK» в моменты времени t1, t2;

ΔψKA (t1, t2) - значение требуемого угла разворота КА вокруг оси «YKA» для ее совмещения с осью «YCOCK» в моменты времени t1, t2;

ΔϑKA (t1, t2) - значение требуемого угла разворота КА вокруг оси «ZKA» для ее совмещения с осью «YCOCK» в моменты времени t1, t2;

- единичный вектор направления на Солнце;

«XKA», «YKA», «ZKA» - связанные оси КА;

«XCOCK», «YCOCK», «ZCOCK» - оси солнечно-орбитальной системы координат (COCK);

ХПОС - значение измерений ПОС при ориентации оси «XKA» на Солнце;

ZПОС - значение измерений ПОС при ориентации оси «ZKA» на Солнце;

γKA - проекция «единичного» вектора направления на Солнце на ось «YKA» КА;

γCOCK - проекция единичного вектора направления на Солнце на ось «YCOCK» COCK;

φKA(t) - угол, образованный осью «YKA» и проекцией единичного вектора на плоскость между осями «YKA», «ZKA» КА;

ψKA(t) - угол, образованный осью «XKA» и проекцией единичного вектора на плоскость между осями «ZKA», «XKA» КА;

ϑKA(t) - угол, образованный осью «YKA» и проекцией единичного вектора на плоскость между осями «XKA», «YKA» КА.

На фигуре 2 точками показаны для моментов времени t1 и t2 результаты определения направления на Солнце по измерениям ПОС в его приборных осях. Стрелками показаны изменения для моментов времени t1 и t2 при разворотах КА вокруг двух осей на углы ψKA(t) и ϑKA(t), для совмещения их с осями COCK.

На фигуре 1 единичный вектор направления на Солнце изображен в связанной с КА системе координат («XKA», «YKA», «ZKA») и в солнечно-орбитальной системе координат («XCOCK», «YCOCK», «ZCOCK») для одного и того же момента времени t. Для этого момента времени показаны значения проекций единичного вектора направления на Солнце в связанной с КА системе координат (βПОС, γKA, αПОС), рассчитанные по результатам измерения ПОС.

Из фигуры 1 следует равенство:

Следовательно, справедливо и равенство:

Знаки αПОС, βПОС и γKA присваиваются согласно компоновке ПОС в осях КА.

Значения проекций единичного вектора на связанные оси КА «XKA» и «ZKA» можно получить из равенств:

Где β(t1, t2) и α(t1, t2) - результаты измерения ПОС текущего направления на Солнце;

ХПОС - значение измерений ПОС при ориентации оси «XKA» на Солнце;

ZПОС - значение измерений ПОС при ориентации оси «ZKA» на Солнце.

Направление единичного вектора в связанной с КА системе координат можно задать и через направляющие косинусы:

cosβXПОС, где βX угол, образованный единичным вектором и осью «XKA»;

cosαZПОС, где αZ угол, образованный единичным вектором и осью «ZKA»;

cosγ=γKA, где γ угол, образованный единичным вектором и осью «YKA».

Используя равенство (2, 3, 4) можно получить значения:

- угла ψKA между осью «XKA» и проекцией единичного вектора на плоскость между осями «XKA» и «ZKA»:

ψKA=arctg (αПОСПОС);

- угла φKA между осью «YKA» и проекцией единичного вектора на плоскость между осями «YKA» и «ZKA»:

φKA=arctg (αПОСKA);

- угла ϑKA между осью «YKA» и проекцией единичного вектора на плоскость между осями «XKA» и «YKA»»:

ϑKA=arctg (βПОСKA).

Согласно определения COCK проекции единичного вектора на ее оси должны иметь значения: γCOCK=1, αCOCKCOCK=0.

Для начала ориентации осей KA в COCK необходимо демпфировать вращение (ωx=0) вокруг оси «XKA» Для ориентации ее по оси «XCOCK». Разворотами вокруг осей «YKA» и «ZKA» совместить единичный вектор с осью «YKA» для ориентации ее по оси «YCOCK». Вокруг оси «ZKA», совпавшей с осью «ZCOCK», организовать угловое движение в пределах угла ±10°.

Значение угла ±10° выбрано исходя из того, что отклонение нормали к рабочей поверхности солнечных батарей в пределах угла ±10° практически не сказывается на интегральный приход электрической энергии в химические батареи (ХБ) СЭС от СБ СЭС. Выполняя указанное угловое движение, разворотами вокруг осей «YKA» и «ZKA» продолжают совмещение единичного вектора с осью «YKA» до момента, когда проекция единичного вектора (αПОС) на ось «ZKA» стабильно будет равна нулю.

Следует обратить внимание на то, что описанный способ ориентации связанных осей KA в COCK может применяться только на солнечной части витка.

Способ ориентации осей космического аппарата в солнечно-орбитальную систему координат, включающий запись в бортовую вычислительную машину параметров орбиты космического аппарата, задание космическому аппарату поисковой угловой скорости для обеспечения захвата Солнца полем обзора прибора ориентации, измеряющего направление на Солнце, снижение поисковой угловой скорости, обеспечивая нахождение Солнца в поле обзора прибора ориентации, отличающийся тем, что поддерживают величину угловой скорости, равную нулю, вокруг оси ХКА космического аппарата, разворотами вокруг двух других осей, совмещают единичный вектор направления на Солнце с осью YKA и поддерживая такую ориентацию космического аппарата осуществляют угловое движение вокруг оси ZKA в пределах угла ±10°, тем самым завершая ориентацию осей космического аппарата в солнечно-орбитальную систему координат.



 

Похожие патенты:

Изобретение относится к области комплексной пассивной и активной защиты от внешних динамических воздействий чувствительной аппаратуры, а именно к способам и устройствам оптимизации динамических условий функционирования гравитационно-чувствительных систем, таких как технологические установки по производству материалов в космосе и предназначено для использования в условиях остаточных микроускорений на борту орбитальных космических аппаратов.

Изобретение относится к космической технике и может быть использовано в системах управления ориентацией спутников связи, снабженных бортовым радиотехническим комплексом, для выполнения своей целевой задачи.

Изобретение относится к космической технике и может быть использовано для управления ориентацией космических аппаратов. .

Изобретение относится к оптической технике и может быть использовано в летательных аппаратах, предназначенных для съемки земной поверхности с целью картографирования.

Изобретение относится к области автоматики и может быть использовано для управления движением космических аппаратов. .

Изобретение относится к космической технике и может быть использовано как управляющее средство космических аппаратов, солнечных батарей, стабилизированных навигационных платформ и т.п.

Изобретение относится к навигационному приборостроению и контрольно-измерительной технике и может быть использовано в навигационных системах космических летательных аппаратов и в промышленности для автоматизации производственных процессов.

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс

Изобретение относится к области оптических средств измерения параметров относительного сближения космических аппаратов

Изобретение относится к области оптических средств измерения параметров относительного сближения космических аппаратов
Изобретение относится к управлению ориентацией пилотируемого космического аппарата (ПКА) при полете по орбите вокруг планеты

Группа изобретений относится к бесплатформенным системам ориентации (БСО) космических аппаратов (КА) с гироинерциальными и астронавигационными элементами. Предлагаемый способ состоит в компенсации ошибок БСО, вызванных систематическими погрешностями датчиков угловой скорости (ДУС). Он основан на сравнении показаний ДУС и датчиков астроориентации (ДАО). Оценку погрешности ДУС формируют изодромным преобразованием результата сравнения сигналов углового положения КА, измеренного блоком ДАО и вычисленного в вычислительном устройстве БСО по показаниям ДУС. Сигнал оценки погрешности ДУС на выходе изодромного звена формируют во время подключения к управлению блока ДАО. Этот сигнал запоминают на время отключения от управления блока ДАО. Одновременно осуществляют непрерывное вычитание полученного сигнала из показаний ДУС. В составе показаний этих ДУС отражены абсолютная угловая скорость КА и ошибка, вызванная систематическими погрешностями. Устройство, реализующее предлагаемый способ, содержит БСО, блок ДАО, исполнительные органы. Блок гироинерциальных измерителей БСО составлен из однокомпонентных ДУС. Вычислительное устройство осуществляет интегрирование кинематических уравнений по информации от ДУС. Вычислительные модули включают в себя изодромные звенья, сумматоры и элементы сравнения. Техническим результатом группы изобретений является повышение точности ориентации КА при непрерывном режиме эксплуатации КА за счет постоянной автоматической компенсации ошибок БСО. 2 н.п. ф-лы, 1 ил.

Изобретение относится к приборам ориентации по солнцу и касается оптического солнечного датчика. Датчик содержит широкопольный входной оптический элемент, кодовую маску, светофильтр, защитный экран и матричное фотоприемное устройство МФПУ. Входной оптический элемент выполнен в виде составного моноблока и имеет форму четырехугольной призмы. Моноблок содержит центральную призму в форме четырехугольной усеченной правильной пирамиды, боковые грани которой имеют поглощающее покрытие и четыре боковые одинаковые призмы в форме четырехугольных неправильных пирамид. Одна из граней каждой боковой призмы имеет зеркальное покрытие и этой гранью соединена с соответствующей поглощающей гранью центральной призмы, Составной моноблок опирается на поверхность кодовой маски, в которой выполнены центральный идентификационный маркер, совмещенный с осью симметрии центральной призмы и четыре идентификационных маркера, симметрично расположенные вокруг центрального маркера. Технический результат заключается в повышении точности определения координат и обеспечении равномерности распределения разрешающей способности датчика по всему полю зрения. 9 з.п. ф-лы, 8 ил.

Группа изобретений относится к управлению ориентацией космического аппарата (КА). В предлагаемом способе сигнал гироизмерений вектора угловой скорости (ВУС) используют для формирования сигнала управления. При этом после отказа одного гироскопа формируют сигнал среднего значения астроизмерений ВУС. При отказе двух или более гироскопов формируют сигнал идентификации ВУС, а для формирования управления используют сигнал среднего значения астроизмерений ВУС. При отказе астродатчика для формирования сигнала управления используют сигнал идентификации ВУС. Предлагаемое устройство структурно включает в себя КА и его модель, астродатчик, гироскопический измеритель ВУС, формирователи сигналов гиро- и астрокватернионов и кватерниона сигнала идентификации ВУС. В состав устройства введены два нелинейных блока и два формирователя сигнала переключения. Указанные элементы соединены между собой через цепи с сумматорами, нормально-замкнутыми и нормально-разомкнутыми переключателями. Технический результат группы изобретений заключается в повышении надежности и точности измерения вектора угловой скорости КА. 2 н.п. ф-лы, 3 ил.

Изобретение относится к системам автоматического управления (САУ) авиационно-космическими объектами, работающими, главным образом, в экстремальных условиях внешней среды. САУ содержит последовательно связанные массив датчиков, блок сбора информации (БСИ), управляющие вычислители (УВУ), переключатель каналов, управляемый блоком контроля. УВУ подключены к исполнительным органам объекта управления. САУ также содержит бесплатформенную инерциальную навигационную подсистему с соответствующими датчиками и (нейро-) вычислителями. САУ имеет сообщенные с БСИ типовую аппаратуру спутниковой навигации и оригинальную подсистему оптической коррекции с датчиками разных диапазонов спектра, микропроцессорными и др. элементами. В составе САУ предусмотрено запоминающее устройство, сохраняющее рестартовые массивы для восстановления работоспособности УВУ после импульса ионизирующего или электромагнитного излучения. Для нейтрализации параметрических отказов предусмотрен источник вторичного (постоянного и импульсного) питания, управляемый от УВУ схемами на полевых транзисторах. Все средства нейтрализации катастрофических отказов имеют внутреннее резервирование с контролем их функционирования и переключением на правильно работающий канал. Технический результат изобретения состоит в повышении надежности и точности работы САУ длительное время в условиях воздействия внешних дестабилизирующих факторов и расширении диапазона применения САУ. 27 з.п. ф-лы, 30 ил.

Изобретение относится к космической навигации. Способ повышения точности определения ориентации по звездам заключается в проецировании изображения звезд через оптическую систему на матричный приемник излучения. Изображения звезд занимают область не менее 2х2 пикселя. Определяют положение взвешенного центра изображения звезд с учетом индивидуальных характеристик пикселей. Данные об индивидуальных характеристиках пикселей время от времени обновляют с помощью датчика путем проведения калибровки, при которой свет от оптической системы перекрывается светонепроницаемым затвором при помощи устройства управления затвором, а матричный приемник излучения однородно освещается калибровочным осветителем. Светонепроницаемый затвор установлен между оптической системой и матричным приемником излучения. Затвор состоит из качалки в виде экранирующего апертуру лепестка с заделанным в качалку магнитом и исполнительного соленоида. Технический результат - повышение точности определения ориентации и поддерживание точности в течение длительного времени в процессе функционирования датчика. 3 н. и 7 з.п. ф-лы, 4 ил.

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Согласно способу при совпадении направления на Солнце с плоскостью орбиты КА совмещают строительную ось КА, отвечающую его максимальному моменту инерции, с этим направлением. Выставляют неподвижные относительно КА солнечные батареи перпендикулярно указанной оси, активной стороной к Солнцу. Выполняют закрутку КА вокруг данной оси с угловой скоростью не менее 2°/c. Измеряют угловую скорость КА, ток солнечных батарей и угол между осью закрутки и направлением на Солнце. При достижении этим углом значения не менее 10° определяют тензор инерции КА по измеренным значениям угловой скорости КА и тока солнечных батарей. Технический результат изобретения заключается в повышении надёжности определении тензора инерции КА, в т.ч. при отсутствии на его борту инерционных исполнительных органов.
Наверх