Способ получения многослойного покрытия для режущего инструмента


 


Владельцы патента RU 2414542:

Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" (RU)

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке. Технический результат - повышение работоспособности РИ и качества обработки. Вакуумно-плазменным методом наносят на рабочие поверхности режущего инструмента двухслойное покрытие. В качестве нижнего слоя наносят карбонитрид титана и молибдена, или карбонитрид титана и хрома, или карбонитрид титана и кремния, или карбонитрид титана и алюминия, или карбонитрид титана и железа, или карбонитрид титана и циркония. В качестве верхнего слоя наносят такой же карбонитрид, легированный ниобием. 1 з.п. ф-лы, 1 табл.

 

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Известен способ получения износостойкого покрытия для режущего инструмента (РИ), при котором на его поверхность вакуумно-дуговым методом наносят покрытие из нитрида титана (TiN) или карбонитрида титана (TiCN) (см. Табаков В.П. Работоспособность режущего инструмента с износостойкими покрытиями на основе сложных нитридов и карбонитридов титана. Ульяновск: УлГТУ, 1998, 122 с.). К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе покрытия, обладающие хорошей адгезией к инструментальному материалу, имеют относительно низкую твердость и уровень сжимающих напряжений, либо имеют высокую микротвердость, но недостаточную прочность сцепления с инструментальной основой. В результате этого покрытие легко подвергается абразивному износу, в нем быстро зарождаются и распространяются трещины, приводящие к разрушению покрытия, что снижает стойкость РИ с покрытием.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ, включающий вакуумно-плазменное нанесение многослойного покрытия, состоящего из нижнего слоя нитрида титана и алюминия TiAlN и верхнего слоя нитрида титана, алюминия и циркония TiAlZrN (см. Патент на изобретение RU 2293794 C1, C23C 14/24, C23C 14/06. - 20.02.2007. - Бюл. №5.), принятый за прототип.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, принятого за прототип, относится то, что в известном способе многослойное покрытие содержит слои, имеющие низкие остаточные напряжения и высокую теплопроводность. В результате покрытие плохо сопротивляется процессам трещинообразования и практически не препятствует проникновению тепла вглубь инструмента. Также нитридные покрытия имеют относительно невысокую стойкость при работе с высокими скоростями резания.

Повышение в последнее время стоимости металлорежущего инструмента и ужесточение требований к точности обрабатываемых деталей сделало еще более актуальной проблему повышения стойкости и производительности РИ. Основной причиной износа РИ является возникновение трещин в его режущей части, являющихся причиной появления сколов и выкрашиваний, связанных с усталостным разрушением и явлением ползучести режущего клина РИ. Ползучесть, в свою очередь, вызвана проникновением тепла, образующегося при резании и трении стружки о поверхности инструмента, вглубь инструмента. Одним из путей повышения стойкости и работоспособности РИ с покрытием является нанесение покрытий многослойного типа. Наличие в покрытии слоев с определенными теплофизическими и механическими свойствами способно тормозить процессы образования и распространения трещин без снижения микротвердости, улучшить термонапряженное состояние РИ с покрытием и повысить стойкость РИ.

Технический результат - повышение работоспособности РИ и качества обработки.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном способе на рабочие поверхности РИ вакуумно-дуговым методом наносится двухслойное покрытие. Особенность заявляемого способа заключается в том, что в качестве нижнего слоя при давлении смеси газов (70% азота и 30% ацетилена) в камере установки 6,65·10-3 Па наносят карбонитрид титана и молибдена, или карбонитрид титана и хрома, или карбонитрид титана и кремния, или карбонитрид титана и алюминия, или карбонитрид титана и железа, или карбонитрид титана и циркония, а в качестве верхнего слоя при давлении смеси газов (70% азота и 30% ацетилена) в камере установки 6,65·10-3 Па наносят такой же карбонитрид, легированный ниобием. Применение карбонитридов позволяет повысить работоспособность РИ с покрытием при работе с высокими скоростями резания. Компоновка установки для нанесения покрытия включает один составной катод с корпусом из титанового сплава ВТ1-0 и вставкой из ниобия и два составных катода с корпусом из титанового сплава ВТ1-0 и вставкой из хрома или молибдена или железа или циркония или составной катод с алюминиевым корпусом и вставкой из ВТ1-0 или катод из сплава титана и кремния. При осаждении верхнего слоя используются все три катода с целью получения слоя TiCrNbCN, или TiMoNbCN, или TiFeNbCN, или TiZrNbCN, или TiAlNbCN, или TiSiNbCN, а при осаждении нижнего слоя катод, содержащий ниобий, отключают. Использование в качестве материалов слоев сложных нитридов (TiCrNbCN, или TiMoNbCN, или TiFeNbCN, или TiZrNbCN, или TiAlNbCN, или TiSiNbCN) с высокими остаточными сжимающими напряжениями способствует повышению трещиностойкости покрытия, кроме того, такие материалы имеют более низкую теплопроводность по сравнению с покрытиями типа TiN, TiCN, TiAlN. При этом в зависимости от области использования инструмента с покрытием, его общая толщина может колебаться в пределах от 5 до 8 мкм, а доля нижнего слоя составлять 40-50% от общей толщины покрытия.

Сущность изобретения заключается в следующем. В процессе резания РИ работает в условиях трещинообразования, а также воздействия высоких температур. Для снижения интенсивности процессов износа и разрушения покрытия и самого инструмента наиболее эффективны покрытия сложного состава, а в условиях трещинообразования еще большую эффективность показывают многослойные покрытия со слоями сложного состава. При этом увеличение количества легирующих элементов в составе покрытия приводит к росту его твердости и износостойкости, а также - трещиностойкости. Применение карбонитридов позволяет повысить работоспособность РИ с покрытием при работе с высокими скоростями резания. В зависимости от условий резания толщина покрытия меняется от 5 до 8 мкм (меньшие значения - при прерывистом резании). При этом при уменьшении толщины покрытия доля нижнего слоя возрастает до 50%, чтобы обеспечить возможность получения сплошного слоя, способного полноценно выполнять свои функции (слои толщиной менее 1 мкм нефункциональны). Пластины с покрытиями, полученные с отклонениями от указанных в формуле изобретения толщин слоев, показали более низкие результаты.

Для экспериментальной проверки заявленного способа было нанесено покрытие-прототип с соотношением слоев, соответствующим оптимальному значению, указанному в известном способе, а также двухслойное покрытие по предлагаемому способу. Покрытия наносили на твердосплавные пластины в вакуумной камере установки «Булат - 6», снабженной тремя вакуумно-дуговыми испарителями, расположенными горизонтально в одной плоскости. В качестве катодов испаряемого металла при нанесении нижнего слоя (TiCrCN, или TiMoCN, или TiFeCN, или TiZrCN, или TiAlCN, или TiSiCN) использовали два составных катода с корпусом из титанового сплава ВТ1-0 со вставкой из хрома, или молибдена, или железа, или циркония, или составной катод с алюминиевым корпусом и вставкой из ВТ1-0 или катод из сплава титана и кремния. При нанесении верхнего слоя (TiCrNbCN, или TiMoNbCN, или TiFeNbCN, или TiZrNbCN, или TiAlNbCN, или TiSiNbCN) используют указанные два катода плюс катод, содержащий корпус из титанового сплава ВТ1-0 со вставкой из ниобия и расположенный между первыми катодами. Покрытия наносили после предварительной ионной очистки.

Ниже приведен конкретный пример осуществления предлагаемого способа (покрытие TiCrCN-TiCrNbCN толщиной 6 мкм).

Твердосплавные пластины МК8 (размером 4,7×12×12 мм) промывают в ультразвуковой ванне, протирают ацетоном, спиртом и устанавливают на поворотном устройстве в вакуумной камере установки «Булат-6», снабженной тремя испарителями, расположенными горизонтально в одной плоскости. Камеру откачивают до давления 6,65·10-3 Па, включают поворотное устройство, подают на него отрицательное напряжение 1,1 кВ, включают один испаритель и при токе дуги 100 А производят ионную очистку и нагрев пластин до температуры 560-580°C. Ток фокусирующей катушки 0,4 А. Затем снижают отрицательное напряжение до 160 В, ток катушек до 0,4 А, включают два противоположных испарителя (катода) - составных (с хромовой вставкой), подают в камеру смесь реакционных газов (70% азота и 30% ацетилена) и осаждают покрытие толщиной 3,0 мкм (слой TiCrCN) в течение 18 мин. Затем при напряжении до 160 В, токе фокусирующих катушек до 0,4 А, включают третий катод (содержащий ниобий). В камеру подается смесь реакционных газов (70% азота и 30% ацетилена) и осаждают второй слой покрытия (TiCrNbCN) толщиной 3,0 мкм в течение 18 мин. Затем отключают испарители, подачу реакционного газа, напряжение и вращение приспособления. Через 15-20 мин камеру открывают и извлекают инструмент с покрытием.

Стойкостные испытания проводили на токарно-винторезном станке 16К20 при обработке конструкционной стали 5ХНМ. Испытывали твердосплавные пластины марки МК8, обработанные по известному и предлагаемому способам. Критерием износа служила фаска износа по задней поверхности шириной 0,4 мм.

Результаты испытаний РИ с покрытием
№ пп Материал покрытия Толщина слоев покрытия (нижний-верхний), мкм Hµ, ГПа K0 Стойкость, мин Примечание
1 2 3 4 5 6 7
Обрабатываемый материал - 5ХНМ, V=250 м/мин, S=0,25 мм/об, t=1 мм
1 TiN 6 21,2 0,70 38 Аналог
2 TiAlN-TiAlZrN 2-4 36,1 0,33 95 Прототип
3 TiCrCN-TiCrNbCN 3-3 36,9 0,31 129 В соответствии с формулой
4 TiZrCN-TiZrNbCN 3-3 37,5 0,32 137
5 TiMoCN-TiMoNbCN 3-3 37,2 0,32 134
6 TiAlCN-TiAlNbCN 3-3 37,1 0,30 138
7 TiSiCN-TiSiNbCN 3-3 36,8 0,31 137
8 TiFeCN-TiFeNbCN 3-3 36,6 0,29 125
9 TiCrCN-TiCrNbCN 4-2 35,7 0,35 110 Получены с отклонениями толщины
10 TiZrCN-TiZrNbCN 4-2 36,1 0,37 110
11 TiMoCN-TiMoNbCN 4-2 34,4 0,40 112
12 TiAlCN-TiAlNbCN 4-2 35,6 0,35 113
13 TiSiCN-TiSiNbCN 4-2 36,1 0,37 114
14 TiFeCN-TiFeNbCN 4-2 34,2 0,40 113
15 TiCrCN-TiCrNbCN 3-3 36,3 0,38 118 При одинаковом давлении
16 TiZrCN-TiZrNbCN 3-3 35,9 0,36 120
17 TiMoCN-TiMoNbCN 3-3 36,3 0,37 119
18 TiAlCN-TiAlNbCN 3-3 36,1 0,38 118
19 TiSiCN-TiSiNbCN 3-3 35,7 0,36 121
20 TiFeCN-TiFeNbCN 3-3 36,2 0,37 118
21 TiCrCN-TiCrNbCN 3-3 36,1 0,41 110 При одинаковой температуре
22 TiZrCN-TiZrNbCN 3-3 36,0 0,42 113
23 TiMoCN-TiMoNbCN 3-3 35,9 0,45 121
24 TiAlCN-TiAlNbCN 3-3 36,2 0,41 109
25 TiSiCN-TiSiNbCN 3-3 36,0 0,42 113
26 TiFeCN-TiFeNbCN 3-3 35,9 0,45 120
1. Hµ - микротвердость, ГПа (по Виккерсу).
2. K0 - коэффициент отслоения, уменьшение величины которого свидетельствует о росте прочности сцепления с инструментальной основой.

Как видно из приведенных в таблице данных, стойкость пластин, обработанных по предлагаемому способу, выше стойкости пластин, обработанных по способу-прототипу, на 32-45%. При этом пп.9-14 иллюстрируют, что при нарушении требований по назначению толщин слоев стойкость пластин снижается. В пп.15-20 показано, что в случае применения покрытий со слоями, осажденными при одинаковом давлении газа, стойкость также снижается. В пп.21-26 показано, что в случае применения покрытий со слоями, осажденными при одинаковой температуре конденсации, стойкость также снижается.

1. Способ получения многослойного покрытия для режущего инструмента, включающий вакуумно-плазменное нанесение двухслойного покрытия, отличающийся тем, что в качестве нижнего слоя наносят карбонитрид титана и молибдена, или карбонитрид титана и хрома, или карбонитрид титана и кремния, или карбонитрид титана и алюминия, или карбонитрид титана и железа, или карбонитрид титана и циркония, а в качестве верхнего слоя наносят такой же карбонитрид, легированный ниобием.

2. Способ по п.1, отличающийся тем, что в двухслойном покрытии наносят нижний слой толщиной 40-50% от общей толщины покрытия, а общая толщина покрытия составляет 5-8 мкм.



 

Похожие патенты:
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент (РИ) и может быть использовано в металлообработке
Наверх