Бесконтактная модульная магнитоэлектрическая машина



Бесконтактная модульная магнитоэлектрическая машина
Бесконтактная модульная магнитоэлектрическая машина
Бесконтактная модульная магнитоэлектрическая машина
Бесконтактная модульная магнитоэлектрическая машина
Бесконтактная модульная магнитоэлектрическая машина

 


Владельцы патента RU 2414793:

Чернухин Владимир Михайлович (RU)

Изобретение относится к области электротехники, в частности к низкооборотным высокомоментным электрическим двигателям, электроприводам и генераторам, касается особенностей конструктивного исполнения бесконтактных магнитоэлектрических машин и может быть использовано в системах автоматики, в качестве тяговых управляемых и неуправляемых электроприводов, в качестве ветрогенераторов, гидрогенераторов, высокочастотных электрических генераторов, многофазных синхронных электрических двигателей и электрических генераторов преобразователей частоты, а также в качестве многофазных источников питания электрическим током. Предлагаемая бесконтактная модульная магнитоэлектрическая машина состоит из модулей - «элементарных машин» и содержит статор, сердечник якоря которого набран из изолированных листов электротехнической стали с высокой магнитной проницаемостью и имеет явно выраженные полюса с катушечной w-фазной обмоткой якоря, каждая катушка которой размещена на соответствующем явно выраженном полюсе якоря по одной на полюсе, и ротор, содержащий индуктор с симметрично распределенными по цилиндрической поверхности явно выраженными полюсами с чередующейся полярностью, возбуждаемыми постоянными магнитами. При этом выполняются определенные соотношения между числом явно выраженных полюсов якоря, числом фаз m-фазной обмотки якоря, числом явно выраженных полюсов в фазе модуля якоря, числом модулей и числом явно выраженных полюсов индуктора. Достигаемый технический результат при использовании данного изобретения состоит в обеспечении высоких энергетических показателей, большого удельного вращающего момента на валу в режиме электрического двигателя и большой удельной мощности в режиме электрического генератора бесконтактной модульной магнитоэлектрической машины за счет лучшего использования полезного объема машины. 6 з.п. ф-лы, 5 ил.

 

Изобретение относится к области электротехники, в частности к низкооборотным высокомоментным электрическим двигателям, электроприводам и генераторам, касается конструктивного исполнения бесконтактных магнитоэлектрических машин и может быть использовано в системах автоматики, в качестве тяговых управляемых и неуправляемых электроприводов, а также в качестве ветрогенераторов, гидрогенераторов, высокочастотных электрических генераторов, многофазных синхронных электрических двигателей и генераторов преобразователей частоты и многофазных источников питания электрическим током.

Известна индукторная электрическая машина (Патент RU 2009599 С1, МПК 5 Н02К 19/06, Н02К 19/24, авторы Жуловян В.В., Новокрещенов О.И., Шаншуров Г.А.), содержащая явнополюсный с числом полюсов Z0 зубчатый статор с многофазной катушечной обмоткой, каждая катушка которой размещена на одном полюсе статора, безобмоточный ферромагнитный зубчатый ротор и преобразователь, к которому подключена обмотка статора, статор и ротор выполнены с четными и не равными друг другу числами зубцов, и каждая фаза обмотки выполнена из p встречно включенных катушек, размещенных со сдвигом на двойное полюсное деление 2·τ, где p - число четное, 2·τ=Z0/p. Недостатком описанной индукторной электрической машины принято считать невысокие энергетические показатели. Кроме этого указанные технические устройства чаще всего выполняют с малыми воздушными зазорами, что усложняет технологию и затрудняет их изготовление при массовом (серийном) производстве.

Известна принятая за прототип бесконтактная магнитоэлектрическая машина (Патент RU 2354032 С1, МПК Н02К 21/12, Н02К 29/00, авторы Чернухин В.М., Захаренко А.Б.), содержащая якорь с числом зубцов Z1=m·Z1m·с, где m=2, 3, 4, 5, 6 … - число фаз обмотки якоря, каждая из фаз состоит из катушек, охватывающих по одному зубцу якоря, и индуктор с полюсами, сердечник индуктора состоит из скрепленных между собой первого и второго сердечников и намагниченного в осевом направлении постоянного магнита, расположенного между сердечниками индуктора, первый и второй сердечники индуктора размещены относительно друг друга так, что ось каждого зубца первого сердечника совпадает с осью каждого паза второго сердечника индуктора, бесконтактная магнитоэлектрическая машина состоит из модулей - «элементарных машин», число зубцов на любом сердечнике индуктора Z2N=Z2S=(m·Z1m±1)·с, где с=1, 2, 3, 4… - число модулей, Z1m=1, 2, 3, 4… - число зубцов фазы якоря в одном модуле. Недостатком прототипа является худшее использование полезного объема машины по сравнению с заявляемым изобретением.

Целью настоящего изобретения является улучшение энергетических показателей, увеличение удельного момента на валу бесконтактной магнитоэлектрической машины за счет лучшего использования ее полезного объема.

Задачей настоящего изобретения является оптимальный выбор числа явно выраженных полюсов якоря и числа явно выраженных полюсов индуктора, возбуждаемых постоянными магнитами, которые могут быть расположены радиально, тангенциально и аксиально, при выполнении сосредоточенной на полюсах якоря m-фазной катушечной обмотки якоря бесконтактной модульной магнитоэлектрической машины.

Техническим результатом настоящего изобретения является обеспечение высоких энергетических показателей, большого удельного вращающего момента на валу в режиме электрического двигателя и большой удельной мощности в режиме электрического генератора бесконтактной модульной магнитоэлектрической машины.

С целью достижения задачи и технического результата изобретения бесконтактная магнитоэлектрическая машина состоит из модулей. Модуль представляет собой «элементарную машину» в составе бесконтактной магнитоэлектрической машины. Статор бесконтактной модульной магнитоэлектрической машины содержит шихтованный сердечник якоря с явно выраженными полюсами, катушечную m-фазную обмотку якоря, каждая катушка которой размещена на соответствующем явно выраженном полюсе якоря по одной на полюсе, ротор содержит индуктор с симметрично распределенными по цилиндрической поверхности явно выраженными полюсами, создающими магнитный поток возбуждения при помощи постоянных магнитов и образующими в рабочем воздушном зазоре чередующуюся полярность «N - S» магнитных полюсов. Индуктор крепится к немагнитной втулке или немагнитному валу (при малых диаметрах ротора). В настоящем изобретении индуктор является ротором, а якорь - статором. Возможны исполнения ротора с постоянными магнитами любого типа - с когтеобразными полюсами и аксиальным расположением постоянных магнитов, с радиальным размещением постоянных магнитов, с тангенциальным расположением постоянных магнитов (ротор «коллекторного типа»), мозаичный сборный ротор (типа РОМС). Возможны исполнения бесконтактной модульной магнитоэлектрической машины с внешним якорем и внутренним индуктором, с внутренним якорем и внешним индуктором.

Бесконтактная модульная магнитоэлектрическая машина может работать как электрическим генератором, так и электрическим двигателем в неуправляемом при питании непосредственно от источника переменного напряжения и управляемом вентильном режимах.

При применении бесконтактной модульной магнитоэлектрической машины в качестве синхронного электрического двигателя питание обмотки якоря может осуществляться:

- от m-фазного источника переменного напряжения постоянной частоты,

- от m-фазного источника переменного напряжения регулируемой частоты,

- от источника постоянного напряжения посредством управляемого инвертора, подающего синусоидальное напряжение на фазы обмотки якоря в зависимости от показаний датчика углового положения ротора для достижения максимального вращающего момента.

При применении бесконтактной модульной магнитоэлектрической машины в качестве электрического двигателя постоянного тока с независимым возбуждением питание обмотки якоря может осуществляться прямоугольными импульсами напряжения от электронного коммутатора по определенному алгоритму в зависимости от показаний датчика углового положения ротора для достижения максимального вращающего момента.

Сущность изобретения поясняется чертежами:

фиг.1, фиг.3 - примеры реализации изобретения в виде поперечных разрезов бесконтактной модульной магнитоэлектрической машины с ротором «коллекторного типа»,

фиг.2, фиг.4 - примеры реализации изобретения в виде схем соединений катушек m-фазных обмоток якоря при работе модульной магнитоэлектрической машины в режиме электрического двигателя и векторных диаграмм фазных токов якоря,

фиг.5 - общий вид бесконтактной модульной магнитоэлектрической машины с внешним якорем и внутренним индуктором.

В соответствии с настоящим изобретением для получения наилучших энергетических показателей при максимальном удельном моменте на валу бесконтактной модульной магнитоэлектрической машины число явно выраженных полюсов якоря Z1P, число фаз m-фазной обмотки якоря m=3, 4, 5, 6,…, число явно выраженных полюсов в фазе модуля якоря Z1c, число модулей с=1, 2, 3, 4,… и число явно выраженных полюсов индуктора Z2P связаны равенствами (1) и (2)

причем при m=3, 5, 7, 9,… - число явно выраженных полюсов в фазе модуля якоря Z1c=1, при m=4, 6, 8, 10,… - число явно выраженных полюсов в фазе модуля якоря Z1c=2, катушки обмотки в фазе модуля якоря при Z1c=2 соединены между собой согласно в магнитном отношении, соответствующие катушки обмотки фазы якоря разных модулей соединены в магнитном отношении встречно, начала фаз обмотки якоря могут принадлежать катушкам, сосредоточенным на явно выраженных полюсах одного из модулей, либо - соответствующим катушкам любого модуля, катушки обмотки якоря, принадлежащие одной фазе и одному или разным модулям, могут быть соединены между собой последовательно, параллельно или образовывать последовательно-параллельные электрические цепи, концы фаз модулей обмотки, либо концы фаз обмотки якоря при этом соединены между собой накоротко.

Модуль MZ удобно обозначать в виде несократимой дроби MZ=Z1P/Z2P, показывающей соотношение числа явно выраженных полюсов якоря и числа явно выраженных полюсов индуктора в «элементарной машине».

Следует отметить, что направление вращения индуктора в режиме работы бесконтактной модульной магнитоэлектрической машины электрическим двигателем противоположно направлению вращения кругового магнитного поля якоря, созданного многофазной системой переменных электрических токов, протекающих по обмотке якоря. Это обстоятельство следует учитывать при расчете магнитных потерь в машине при ее проектировании.

На фиг.1-4 представлены примеры реализации изобретения в соответствии с равенствами (1) и (2). Положение векторов фазных токов якоря на векторной диаграмме, направления электрических токов, протекающих по катушкам обмотки якоря схемы соединений катушек 6-фазной обмотки якоря, показанные на фиг.2, и положение сердечника индуктора относительно сердечника якоря бесконтактной модульной магнитоэлектрической машины в двигательном режиме, показанное на фиг.1, соответствуют одному и тому же моменту времени. Положение векторов фазных токов якоря на векторной диаграмме, направления электрических токов, протекающих по катушкам обмотки якоря схемы соединений катушек 5-фазной обмотки якоря, показанные на фиг.4, и положение сердечника индуктора относительно сердечника якоря бесконтактной модульной магнитоэлектрической машины в двигательном режиме, показанное на фиг.3, соответствуют одному и тому же моменту времени. На фиг.2 представлена схема соединений катушек 6-фазной обмотки якоря для 2-модульной электрической машины, у которой катушки одного модуля, принадлежащие одной фазе, включены между собой последовательно, а полученные таким образом последовательные электрические цепи разных модулей, принадлежащие одной фазе, включены между собой параллельно. На фиг.4 представлена схема соединений катушек 5-фазной обмотки якоря для 3-модульной электрической машины, у которой все катушки разных модулей, принадлежащие одной фазе, включены между собой последовательно.

Рассмотрим конструкцию бесконтактной модульной магнитоэлектрической машины с внешним якорем и внутренним индуктором, представляющим собой ротор «коллекторного типа» (фиг.1, фиг.3, фиг.5). Перемагничиваемый с высокой частотой сердечник 2 якоря имеет явно выраженные полюса 3 и выполнен шихтованным из изолированных листов электротехнической стали с высокой магнитной проницаемостью. Он запрессован в корпусе 7, который может быть выполнен из стали или из сплава алюминия. Возможен также и бескорпусный вариант. На каждом из явно выраженных полюсов 3 якоря размещена катушка обмотки 4 якоря. Катушки обмотки 4 якоря выполняются из обмоточного медного провода или обмоточной медной шины. Они изолируются от ярма и явно выраженных полюсов 3 сердечника 2 якоря корпусной изоляцией. Индуктор при помощи подшипников 10, вала 5 и подшипниковых щитов 9 позиционирован относительно якоря. Вал 5 выполнен из стали. Активная часть индуктора собирается из тангенциально расположенных постоянных магнитов 8 и чередующимися с ними явно выраженными полюсами 7 таким образом, чтобы в рабочем воздушном зазоре образовывалась чередующаяся полярность полюсов «N - S» индуктора, и крепится к втулке 6, выполненной из немагнитного материала (чаще всего - из сплава алюминия). Явно выраженные полюса 7 индуктора выполняются из материала с высокой магнитной проницаемостью и могут быть набраны из сегментарных листов электротехнической стали, скрепленных между собой в аксиальном направлении в пакеты, образующими полюса, а могут представлять собой цельные полюса из магнитомягкого материала, обработанные механически. Немагнитная втулка 6 необходима для того, чтобы магнитный поток возбуждения не замыкался сам на себя, минуя рабочий воздушный зазор. Магнитный поток индуктора (фиг.1, фиг.3) выходит из постоянных магнитов с полярностью «N» в тангенциальном направлении, проходит через явно выраженные полюса 7 индуктора вначале в тангенциальном направлении, затем в радиальном направлении в сторону воздушного зазора, пронизывает воздушный зазор между индуктором и якорем, проходит через явно выраженные полюса 3 якоря в радиальном направлении от воздушного зазора, ярмо сердечника 2 якоря в тангенциальном направлении, далее через явно выраженные полюса 3 якоря в радиальном направлении в сторону воздушного зазора, пронизывает воздушный зазор между индуктором и якорем, входит в явно выраженные полюса 7 индуктора в радиальном направлении, а затем в постоянные магниты с полярностью «6», замыкая таким образом магнитную цепь.

Бесконтактная модульная магнитоэлектрическая машина может работать в двигательном и генераторном режимах.

Рассмотрим двигательный режим (фиг.1-5). На фазы обмотки 4 якоря от источника питания подают переменное напряжение, по обмотке протекает переменный ток, наводящий переменную во времени МДС якоря. На фиг.2 показана векторная диаграмма фазных токов якоря и схема соединений катушек 6-фазной обмотки якоря для 2-модульной машины. На фиг.4 показана векторная диаграмма фазных токов якоря и схема соединений катушек 5-фазной обмотки якоря для 3-модульной машины. Симметричные многофазные напряжения, поданные на зажимы этих обмоток, изменяются во времени, и векторы токов на векторных диаграммах поворачиваются в осях координат xy против часовой стрелки. Направления электрических токов, показанные на схемах соединений катушек обмоток якоря, соответствуют моменту времени, когда фазные токи на векторных диаграммах проецируются на ось ординат. Катушки обмотки 4 якоря названы буквой, обозначающей принадлежность к соответствующей фазе, и цифрой, обозначающей номер явно выраженного полюса 3 сердечника 2 якоря. Например, катушка A1 - катушка фазы A, расположенная на первом явно выраженном полюсе 3 сердечника 2 якоря. При протекании по катушкам обмотки 4 якоря переменного электрического тока явно выраженные полюса 3 якоря, намагничиваясь, образуют изменяющиеся во времени южные магнитные полюса «S» и северные магнитные полюса «N» с переменной МДС якоря. Явно выраженные полюса 7 индуктора возбуждены постоянными магнитами 8 и образуют неизменяющиеся во времени и с постоянной МДС южные магнитные полюса «S» и северные магнитные полюса «N» индуктора с чередующейся полярностью. Вследствие взаимодействия переменной МДС якоря с постоянной МДС индуктора к ротору приложен однонаправленный вращающий момент. В соответствии с настоящим изобретением за один период изменения магнитного поля ротор поворачивается на два полюсных деления индуктора, т.е. на 2·t2P, где t2P=360°/Z2p. Вследствие этого, при изменении питающих фазных напряжений, поданных на обмотку якоря с частотой f (Гц), ротор перемещается с синхронной частотой вращения n=120·f/Z2P (об/мин). Направление вращения ротора на фиг.1 и фиг.3 показано стрелкой с буквой «n».

Рассмотрим генераторный режим (фиг.1-5). При вращении ротора сторонним источником момента с частотой вращения n постоянный магнитный поток индуктора, созданный постоянными магнитами 8, пронизывая воздушный зазор и явно выраженные полюса 3 якоря то со стороны индуктора, то со стороны якоря, создает в явно выраженных полюсах 3 якоря переменный магнитный поток, наводящий в катушках обмотки 4 якоря переменную ЭДС. В катушках обмотки 4 якоря, принадлежащих одной фазе, в любой момент времени наводятся одинаковые по величине ЭДС, которые, суммируясь, образуют ЭДС этой фазы. Если внешняя цепь - цепь нагрузки замкнута, то по обмотке 4 якоря протекает m-фазный электрический ток, электрическая мощность отдается потребителю.

1. Бесконтактная модульная магнитоэлектрическая машина, состоящая из модулей, число которых с=1, 2, 3, 4, …, и содержащая якорь c m-фазной катушечной обмоткой и индуктор с полюсами, отличающаяся тем, что статор содержит шихтованный сердечник якоря с явно выраженными полюсами, катушечную m-фазную обмотку якоря, каждая катушка которой размещена на соответствующем явно выраженном полюсе якоря по одной на полюсе, ротор содержит индуктор с симметрично распределенными по цилиндрической поверхности явно выраженными полюсами, создающими магнитный поток возбуждения при помощи постоянных магнитов и образующими в рабочем воздушном зазоре чередующуюся полярность «N-S» магнитных полюсов, активная часть индуктора насажена на немагнитную втулку, число явно выраженных полюсов якоря Z1P, число фаз m-фазной обмотки якоря m=3, 4, 5, 6, …, число явно выраженных полюсов в фазе модуля якоря Z1c, число модулей с и число явно выраженных полюсов индуктора Z2P связаны равенствами (1) и (2):


причем при m=3, 5, 7, 9, … число явно выраженных полюсов в фазе модуля якоря Z1c=1, при m=4, 6, 8, 10, … число явно выраженных полюсов в фазе модуля якоря Z1c=2, катушки обмотки в фазе модуля якоря при Z1c=2 соединены между собой согласно в магнитном отношении, соответствующие катушки обмотки фазы якоря разных модулей соединены в магнитном отношении встречно.

2. Бесконтактная модульная магнитоэлектрическая машина по п.1, отличающаяся тем, что якорь расположен снаружи, индуктор - внутри.

3. Бесконтактная модульная магнитоэлектрическая машина по п.1, отличающаяся тем, что индуктор расположен снаружи, якорь - внутри.

4. Бесконтактная модульная магнитоэлектрическая машина по п.2 или 3, отличающаяся тем, что ротор выполнен с когтеобразными полюсами и аксиальным расположением постоянных магнитов.

5. Бесконтактная модульная магнитоэлектрическая машина по п.2 или 3, отличающаяся тем, что ротор выполнен с радиальным размещением постоянных магнитов, представляющих собой явно выраженные полюса индуктора и прикрепленных к магнитомягкому сердечнику.

6. Бесконтактная модульная магнитоэлектрическая машина по п.2 или 3, отличающаяся тем, что ротор выполнен с тангенциальным расположением постоянных магнитов (ротор «коллекторного типа»).

7. Бесконтактная модульная магнитоэлектрическая машина по п.2 или 3, отличающаяся тем, что ротор выполнен мозаичным сборным (типа РОМС).



 

Похожие патенты:

Изобретение относится к области электротехники, в частности к низкооборотным высокомоментным электрическим двигателям, электроприводам и электрическим генераторам, касается конструктивного исполнения электрических машин с контактными кольцами любых мощностей - от десятых долей Вт до сотен кВт и может быть использовано в системах автоматики, в качестве тяговых управляемых и неуправляемых электроприводов, электрических генераторов, многофазных источников питания электрическим током.

Изобретение относится к области электротехники, в частности к низкооборотным высокомоментным синхронным электрическим двигателям, электроприводам и электрическим генераторам, касается конструктивного исполнения синхронных электрических машин с контактными кольцами любых мощностей - от десятых долей Вт до сотен кВт, и может быть использовано в системах автоматики, в качестве тяговых управляемых и неуправляемых электроприводов, синхронных электрических генераторов, многофазных источников питания электрическим током.

Изобретение относится к области электротехники и может быть использовано, например, в регулируемых электроприводах общепромышленных механизмов, а также в транспортных средствах, а именно, в источниках питания бортовой сети автомобилей, тракторов, вездеходов и т.д.

Изобретение относится к области электротехники, в частности - к электрическим машинам с бесконтактной коммутацией секций статорной обмотки, и может быть использовано в системах преобразовательной техники, например в электровентиляторах постоянного тока.

Изобретение относится к устройству и способу для управления гибридным двигателем, а более конкретно к устройству и способу для управления гибридным двигателем, в котором в роторе вместо катушки индуктивности используется постоянный магнит.

Изобретение относится к устройству и способу для управления гибридным двигателем, а более конкретно к устройству и способу для управления гибридным двигателем, в котором в роторе вместо катушки индуктивности используется постоянный магнит.

Изобретение относится к области электротехники, в частности к бесконтактным электрическим машинам постоянного тока. .

Изобретение относится к области электротехники и предназначено для использования в электроприводах различных механизмов и исполнительных устройств автоматических систем.

Изобретение относится к электротехнике и может быть использовано как универсальный источник электрической энергии. .

Изобретение относится к области электротехники и касается особенностей конструктивного выполнения вентильно-индукторных двигателей с числом фаз m 3. .

Изобретение относится к области электротехники, в частности к низкооборотным высокомоментным электрическим двигателям, электроприводам и генераторам, касается особенностей конструктивного исполнения бесконтактных магнитоэлектрических машин и может быть использовано в системах автоматики, в качестве тяговых управляемых и неуправляемых электроприводов, в качестве ветрогенераторов, гидрогенераторов, высокочастотных электрических генераторов, многофазных синхронных электрических двигателей и электрических генераторов преобразователей частоты, а также в качестве многофазных источников питания электрическим током.

Изобретение относится к области электротехники, в частности к низкооборотным высокомоментным синхронным электрическим двигателям, электроприводам и генераторам, касается особенностей конструктивного исполнения бесконтактных синхронных магнитоэлектрических машин и может быть использовано в системах автоматики, в качестве тяговых управляемых и неуправляемых электроприводов, в качестве ветрогенераторов, гидрогенераторов, высокочастотных электрических генераторов, многофазных синхронных электрических двигателей и электрических генераторов преобразователей частоты, а также в качестве многофазных источников питания электрическим током.

Изобретение относится к области электротехники и касается электрических машин, в частности электрических машин, имеющих роторы типа постоянных магнитов. .

Изобретение относится к области электротехники, а именно - к электрическим машинам переменного тока, предназначенным для использования в электроприводах с питанием от источников как регулируемого, так и нерегулируемого переменного тока, а также в генераторных установках в качестве источника переменного тока.

Изобретение относится к области электротехники и касается конструкций бесконтактных редукторных магнитоэлектрических машин с электромагнитной редукцией, предназначенных для использования в качестве мотор-колес, мотор-барабанов, прямых приводов в бытовой технике (электромясорубки, стиральные машины и пр.), электроприводов бетономестителей, грузоподъемных механизмов, ленточных транспортеров, насосов для перекачки жидкостей, механизмов с высокими моментами на валу и низкими частотами вращения вала, а также в качестве высокочастотных электрических генераторов.

Изобретение относится к области электротехники и электромашиностроения, а именно - к конструкции торцевых, в основном многополюсных, синхронных машин, работающих в режиме генератора или двигателя.

Изобретение относится к области электротехники и электромашиностроению и может быть использовано при производстве бесконтактных электрических машин, как двигателей, так и генераторов Предлагаемая бесконтактная электрическая машина, в которой проводники якоря пересекаются в активной зоне машины однонаправленным магнитным полем индуктора, содержит ротор в виде явнополюсного индуктора, у которого ось симметрии от полюса N к полюсу S совпадает с осью вращения ротора, и статор с проводниками, расположенными на внутренней поверхности статора вдоль его цилиндрических образующих, проводники разбиты на две группы, в одной из которых проводники расположены вокруг полюса индуктора с полярностью N, а в другой - вокруг полюса индуктора с полярностью S.

Изобретение относится к области электротехники, в частности к особенностям конструктивного выполнения электрических машин, в которых гарантирован большой выходной крутящий момент.

Изобретение относится к области электротехники, в частности к бесконтактным электрическим машинам постоянного тока. .

Изобретение относится к области электротехники и касается особенностей конструктивного выполнения электрических машин, в частности - к синхронным электрическим машинам с возбуждением от постоянных магнитов, которые наряду с известными достоинствами обладают и некоторыми недостатками, в частности - довольно сложными пусковыми и регулировочными характеристиками и относительно низким КПД.

Изобретение относится к области электротехники, в частности к низкооборотным высокомоментным электрическим двигателям, электроприводам и генераторам, касается особенностей конструктивного исполнения бесконтактных магнитоэлектрических машин и может быть использовано в системах автоматики, в качестве тяговых управляемых и неуправляемых электроприводов, в качестве ветрогенераторов, гидрогенераторов, высокочастотных электрических генераторов, многофазных синхронных электрических двигателей и электрических генераторов преобразователей частоты, а также в качестве многофазных источников питания электрическим током.
Наверх