Дезинфицирующий водный раствор (варианты)

Изобретение относится к дезинфицирующим средствам и может найти применение в здравоохранении, пищевой и фармацевтической промышленности, на предприятиях коммунального хозяйства, для обеззараживания и консервации питьевой воды, для дезинфекции плавательных бассейнов. Дезинфицирующий водный раствор содержит ионы серебра, полученные путем электролиза с использованием двух серебряных электродов при периодической смене их полярности, дистиллированную воду, молочную кислоту и 33%-ную перекись водорода при следующем соотношении компонентов: ионы серебра Ag+ 0,01-1,5 г/л; молочная кислота 1-50 г/л; перекись водорода, 33%-ная 0,1-3 г/л; дистиллированная вода - остальное. Дезинфицирующий водный раствор (вариант) содержит ионы серебра, ионы меди, полученные путем электролиза с использованием серебряного и медного электродов при периодической смене их полярности, дистиллированную воду, молочную кислоту и 33%-ную перекись водорода при следующем соотношении компонентов: ионы серебра Ag+ 0,01-1,5 г/л; ионы меди Сu+2 0,04-4 г/л; молочная кислота 1-50 г/л; перекись водорода, 33%-ная 0,1-3 г/л; дистиллированная вода - остальное. Изобретение позволяет получить стабильный при хранении дезинфицирующий водный раствор (концентрат) с высоким содержанием действующего вещества. 2 н.п. ф-лы.

 

Изобретение относится к дезинфицирующим водным растворам и может быть использовано в различных областях народного хозяйства (здравоохранении, пищевой и фармацевтической промышленности, предприятиях коммунального хозяйства и др.) для дезинфекции различных объектов, для обеззараживания и консервации питьевой воды из открытых пресных водоемов (рек, озер), подземных источников (артезианского водоснабжения), хозяйственно-питьевого водоснабжения, плавательных бассейнов.

Многообразие дезинфицирующих средств, известных и применяемых в настоящее время, построено на использовании всего нескольких классов химических соединений, известных много десятков лет. Общая тенденция в развитии химических дезинфектантов в последние годы состоит не в создании новых дезинфектантов, а в поиске способов активации уже известных дезинфицирующих средств - разработке режимов, при которых минимальная концентрация активных действующих веществ обеспечивает высокий бактерицидный эффект, а коррозионная или деструктивная активность по отношению к материалам изделия, а также токсикологические действия на человека становятся минимальными. В настоящее время одним из главных направлений повышения эффективности дезинфицирующих средств считается добавление в рецептуру активаторов, синергистов, использование дополнительных физических воздействий, т.е. создание условий, при которых действующее вещество в момент применения дезинфицирующих средств находилось бы в метастабильном состоянии, например в стадии пролонгированной химической реакции с активаторами /Л.С.Федорова. Основные направления повышения эффективности дезинфицирующих средств. Материалы Всероссийской научной конференции, посвященной 100-летию со дня рождения В.И.Вашкова «Актуальные проблемы дезинфектологии в профилактике инфекционных и паразитарных заболеваний», М., ИТАР-ТАСС, 2002, с.26-30/.

Аналогом дезинфицирующего водного раствора (вариант первый) является дезинфицирующий раствор на основе ионов серебра, действующим веществом (ДВ) которого является серебро (Ag) /Кульский Л.А. Серебряная вода. Киев. Наукова думка. 1983/. При длительном хранении бактерицидность этого раствора уменьшается и теряется его прозрачность. Это объясняется тем, что ионы серебра взаимодействуют с веществами, находящимися в воде, в результате чего концентрация ионов серебра падает, а продукты взаимодействия выпадают в осадок.

Прототипом заявляемого дезинфицирующего водного раствора (вариант первый) выбран дезинфицирующий водный раствор по патенту РФ №2125971, опубликованный 10.02.1999, как наиболее близкий по совокупности существенных признаков. Раствор содержит ионы серебра, полученные путем электролиза с использованием серебряного анода. В качестве пищевой кислоты дезинфицирующий раствор содержит лимонную или уксусную кислоту при следующем соотношении компонентов, мас.%:

Ионы серебра Ag+ 0,1·10-5-1
Лимонная или уксусная кислота 0,25-5,0
Вода дистиллированная Остальное

Известный дезинфицирующий водный раствор обладает широким спектром антимикробного действия. Однако ионы серебра, полученные в процессе электролиза в присутствии лимонной кислоты (или уксусной) в растворе, образуют не только лимонно-кислое серебро (уксусно-кислое серебро), но и окись серебра, представляющую собой черно-коричневый осадок. Это снижает количество ионов серебра в растворе, создает необходимость постоянной его фильтрации, частой замены фильтрующих элементов, повышенный расход серебра, что определяет существенные недостатки дезинфицирующего раствора:

- недостаточная стойкость при хранении,

- недостаточная бактерицидность,

- недостаточная технологичность в изготовлении.

Аналогом дезинфицирующего водного раствора (вариант второй) является дезинфицирующий раствор на основе ионов серебра, действующим веществом (ДВ) которого является серебро (Ag) /Кульский Л.А. Серебряная вода. Киев. Наукова думка. 1983/. При длительном хранении бактерицидность этого раствора уменьшается и теряется его прозрачность. Это объясняется тем, что ионы серебра взаимодействуют с веществами, находящимися в воде, в результате чего концентрация ионов серебра падает, а продукты взаимодействия выпадают в осадок.

Прототипом заявляемого дезинфицирующего водного раствора (вариант второй) выбран дезинфицирующий водный раствор по патенту РФ №2125971, опубликованному 10.02.1999, как наиболее близкий по совокупности существенных признаков. Раствор содержит ионы серебра, полученные путем электролиза с использованием серебряного анода. В качестве пищевой кислоты дезинфицирующий раствор содержит лимонную или уксусную кислоту при следующем соотношении компонентов, мас.%:

Ионы серебра Ag+ 0,1·10-5-1
Лимонная или уксусная кислота 0,25-5,0
Вода дистиллированная Остальное

Известный дезинфицирующий водный раствор обладает широким спектром антимикробного действия. Однако ионы серебра, полученные в процессе электролиза в присутствии лимонной кислоты (или уксусной) в растворе, образуют не только лимонно-кислое серебро (уксусно-кислое серебро), но и окись серебра, представляющую собой черно-коричневый осадок. Это снижает количество ионов серебра в растворе, создает необходимость постоянной его фильтрации, частой замены фильтрующих элементов, повышенный расход серебра.

Дезинфицирующий раствор имеет следующие существенные недостатки:

- недостаточная стойкость при хранении,

- недостаточная бактерицидность,

- недостаточная технологичность в изготовлении,

- ограниченная функциональность из-за отсутствия альгицидных свойств.

Задачей, на решение которой направлено заявляемое изобретение, является увеличение эффективности и сроков хранения технологичного в изготовлении дезинфицирующего водного раствора за счет повышения его бактерицидности и стойкости (стабильности) при хранении.

Сущность изобретения (вариант первый) заключается в том, что дезинфицирующий водный раствор, содержащий ионы серебра, полученные путем электролиза, дистиллированную воду и пищевую кислоту, дополнительно содержит в качестве пищевой кислоты молочную кислоту, а также 33%-ную перекись водорода при следующем соотношении компонентов:

Ионы серебра Ag+ 0,01-1,5 г/л
Молочная кислота 1-50 г/л
Перекись водорода, 33%-ная 0,1-3 г/л
Дистиллированная вода Остальное

При этом электролиз осуществляется с использованием двух серебряных электродов при периодической смене их полярности.

В процессе электролиза раствор насыщается ионами серебра, которые реагируют с молочной кислотой, в результате чего образуется молочно-кислое серебро (лактат серебра) - активно действующее вещество дезинфицирующего раствора. Лактат серебра является хорошо диссоциирующим соединением, т.е. концентрация ионов серебра в растворе остается стабильной.

С помощью перекиси водорода в присутствии молочной кислоты осуществляется химическое растворение накопленного в растворе в процессе электролиза оксида серебра с образованием лактата серебра, что увеличивает концентрацию действующего вещества, позволяет сохранять раствор прозрачным в течение длительного времени и избавляет от необходимости фильтрации раствора и извлечения оксида серебра из фильтров.

Непрореагировавшая молочная кислота и перекись водорода, являясь бактерицидами, также усиливают бактерицидные свойства раствора. В то же время перекись водорода способствует повышению антимикробных свойств ионов серебра.

Таким образом, повышается бактерицидность и стойкость раствора, а также его технологичность.

Сущность изобретения (вариант второй) заключается в том, что дезинфицирующий водный раствор, содержащий ионы серебра, полученные путем электролиза, дистиллированную воду и пищевую кислоту, дополнительно содержит в качестве пищевой кислоты молочную кислоту, ионы меди, полученные путем электролиза, а также 33%-ную перекись водорода при следующем соотношении компонентов:

Ионы серебра Ag+ 0,01-1,5 г/л
Ионы меди Cu+ 0,04-4 г/л
Молочная кислота 1-50 г/л
Перекись водорода, 33%-ная 0,1-3 г/л
Дистиллированная вода Остальное

При этом электролиз осуществляется с использованием серебряного и медного электродов при периодической смене их полярности.

В процессе электролиза раствор насыщается ионами серебра и меди, которые реагируют с молочной кислотой, в результате чего образуются молочно-кислое серебро (лактат серебра) и молочно-кислая медь (лактат меди) - активно действующие вещества дезинфицирующего раствора. Лактат серебра и лактат меди являются хорошо диссоциирующими соединениями, т.е. концентрация ионов серебра и ионов меди в растворе остается стабильной.

С помощью перекиси водорода в присутствии молочной кислоты осуществляется химическое растворение накопленного в растворе в процессе электролиза оксида серебра с образованием лактата серебра, что увеличивает концентрацию действующего вещества, позволяет сохранять раствор прозрачным в течение длительного времени и избавляет от необходимости фильтрации раствора и извлечения оксида серебра из фильтров.

Непрореагировавшая молочная кислота и перекись водорода, являясь бактерицидами, также усиливают бактерицидные свойства раствора. В то же время перекись водорода способствует повышению антимикробных свойств ионов серебра и ионов меди.

Кроме того, при комплексном использовании серебра и меди с перекисью водорода достигается высокий обеззараживающий эффект.

Таким образом, повышается бактерицидность и стойкость раствора, а также его технологичность.

Введение ионов меди позволяет без увеличения содержания ионов серебра получить раствор с повышением бактерицидных свойств, за счет чего появляется дополнительный экономический эффект.

Кроме того, дезинфицирующий водный раствор, содержащий ионы серебра и ионы меди, обладает не только ярко выраженными бактерицидными, но и альгицидными свойствами.

Получение заявляемого дезинфицирующего раствора (вариант первый) осуществляют следующим образом.

В ванне с дистиллированной водой растворяют молочную кислоту в количестве 1-50 г/л. В раствор помещают два серебряных электрода на расстоянии 10-15 мм друг от друга. Выбор такого межэлектродного расстояния обусловлен тем, что при большем расстоянии интенсивность образования ионов серебра значительно уменьшается, а при меньшем - между электродами возможно образование перемычки из окиси серебра.

Электролиз ведут в следующем режиме:

U - 12-24 В,

i - 1-5 А/дм2.

Процесс электролиза проводится при повышенной плотности тока (1-5 А/дм2), что ускоряет процесс образования оксидов серебра.

Полярность электродов меняют через каждые 5 мин. Изменение полярности электродов позволяет растворять поочередно каждый из электродов, насыщая раствор ионами серебра.

Серебряный анод растворяется с переходом в раствор ионов серебра, которые взаимодействуют с молочной кислотой, образуя молочно-кислое серебро (лактат серебра). Когда потенциал серебряного анода достигает величины потенциала выделения кислорода, процесс перехода ионов серебра в раствор и образование лактата серебра замедляется. Начинается процесс образования оксидов серебра, представляющего собой осадок черного цвета. При достижении концентрации ионов серебра в растворе 75% от требуемой, электролиз останавливают и добавляют в раствор 33%-ную перекись водорода в количестве 0,4-0,7 г/л. Выбор такого количества обусловлен тем, что остаточная концентрация перекиси водорода в дезинфицирующем растворе должна быть в пределах 0,15-0,20 г/л. Эта остаточная концентрация перекиси водорода в дезинфицирующем растворе является оптимальной для сохранения его стабильности и прозрачности в течение длительного времени.

Кроме того, непрореагировавшая перекись водорода (оставшаяся в растворе) усиливает бактерицидные свойства раствора.

В течение всего процесса электролиза осуществляют струйную прокачку электролита с помощью WL 301 RM насоса с направлением струи в межэлектродное пространство. Постоянная перекачка электролита позволяет удалять из межэлектродного пространства образующиеся оксиды серебра, тем самым создавая возможность накапливания их во всем объеме ванны, при этом повышается электропроводность электролита в межэлектродном пространстве.

Процесс образования молочно-кислого серебра может быть представлен по следующей схеме:

С3Н6О3+Ag+=AgC3H5O3+

2C3H6O3+Ag2O+2H2O2=2AgC3H5O3+3H2O+O2

В результате химической реакции в растворе образуется молочно-кислое серебро, являющееся активно действующим веществом дезинфицирующего раствора. Не прореагировавшая молочная кислота и перекись водорода также усиливают бактерицидные свойства раствора. Химическое растворение оксида серебра, накопленного в растворе в процессе электролиза, увеличивает концентрацию ионов серебра на 25% и избавляет от необходимости фильтрации раствора и извлечения оксида серебра из фильтров. Таким образом, повышается бактерицидность и стойкость раствора, а также его технологичность.

Пример 1.

В ванне с дистиллированной водой растворяют молочную кислоту в количестве 5 г/л. В раствор помещают серебряные электроды на расстоянии 10-15 мм друг от друга. Режим электролиза устанавливают:

U - 12-24 В,

i - 1-5 А/дм2.

Полярность электродов меняют через каждые 5 мин. В течение всего процесса электролиза в ванне осуществляют струйную перекачку электролита с направлением струи в межэлектродное пространство. При достижении концентрации ионов Ag+ 0,15 г/л электролиз прекращают и добавляют H2O2 в количестве 0,4 г/л.

После растворения Ag2O концентрация ионов Ag+ достигает значения ≈0,2 г/л.

Пример 2.

В ванне с дистиллированной водой растворяют молочную кислоту в количестве 10 г/л. В раствор помещают серебряные электроды на расстоянии 10-15 мм друг от друга. Режим электролиза устанавливают:

U - 12-24 В,

i - 1-5 А/дм2.

Полярность электродов меняют через каждые 5 мин. В течение всего процесса электролиза в ванне осуществляют струйную перекачку электролита с направлением струи в межэлектродное пространство. При достижении концентрации ионов Ag+ 0,30 г/л электролиз прекращают и добавляют Н2О2 в количестве 0,7 г/л.

После растворения Ag2O концентрация ионов Ag+ достигает значения ≈0,4 г/л.

Получение заявляемого дезинфицирующего раствора (вариант второй) осуществляют следующим образом.

В ванне с дистиллированной водой растворяют молочную кислоту в количестве 1-50 г/л. В раствор помещают серебряный и медный электроды на расстоянии 10-15 мм друг от друга. Выбор такого межэлектродного расстояния обусловлен тем, что при большем расстоянии интенсивность образования ионов серебра значительно уменьшается, а при меньшем - между электродами возможно образование перемычки из окиси серебра.

Электролиз ведут в следующем режиме:

U - 12-24 В,

i - 1-5 А/дм2.

Процесс электролиза проводится при повышенной плотности тока (1-5 А/дм2), что ускоряет процесс образования оксидов серебра.

Полярность электродов меняют через каждые 5 мин. Это позволяет поочередно растворять серебряный и медный электроды, насыщая раствор ионами серебра и меди. Ионы серебра, взаимодействуя с молочной кислотой, образуют молочно-кислое серебро (лактат серебра). Ионы меди, взаимодействуя с молочной кислотой, образуют молочно-кислую медь (лактат меди).

Когда потенциал анода достигает величины потенциала выделения кислорода, процесс перехода ионов серебра в раствор и образование лактата серебра замедляется. Начинается процесс образования оксидов серебра, представляющего собой осадок черного цвета. При достижении концентрации ионов серебра в растворе 75% от требуемой, электролиз останавливают и добавляют в раствор 33%-ную перекись водорода в количестве 0,4-0,7 г/л. Выбор такого количества обусловлен тем, что остаточная концентрация перекиси водорода в дезинфицирующем растворе должна быть в пределах 0,15-0,20 г/л. Эта остаточная концентрация перекиси водорода в дезинфицирующем растворе является оптимальной для сохранения его стабильности и прозрачности в течение длительного времени. Кроме того, непрореагировавшая перекись водорода (оставшаяся в растворе) усиливает бактерицидные свойства раствора.

В течение всего процесса электролиза осуществляют струйную прокачку электролита с помощью WL 301 RM насоса с направлением струи в межэлектродное пространство. Постоянная перекачка электролита позволяет удалять из межэлектродного пространства образующиеся оксиды серебра, тем самым создавая возможность накапливания их во всем объеме ванны, при этом повышается электропроводность электролита в межэлектродном пространстве.

Процессы образования лактата серебра и лактата меди могут быть представлены по следующей схеме:

С3Н6О3+Ag+=AgC3H5O3+

2C3H6O3+Ag2O+2H2O2=2AgC3H5O3+3H2O+O2

3Н6О3+2Cu+2=2Cu(C3H5O3)+2Н+

Таким образом, в этом случае происходит процесс образования молочно-кислого серебра (лактата серебра) и молочно-кислой меди (лактата меди), являющихся активно действующими веществами дезинфицирующего водного раствора. Непрореагировавшая молочная кислота и перекись водорода также усиливают бактерицидные свойства раствора. Химическое растворение оксида серебра, накопленного в растворе в процессе электролиза, увеличивает концентрацию ионов серебра на 25% и избавляет от необходимости фильтрации раствора и извлечения оксида серебра из фильтров. Таким образом, повышается бактерицидность и стойкость раствора, а также его технологичность.

Введение ионов меди позволяет без увеличения содержания ионов серебра получить раствор с повышением бактерицидных свойств, за счет чего появляется дополнительный экономический эффект.

Кроме того, дезинфицирующий водный раствор, содержащий ионы серебра и ионы меди, обладает не только ярко выраженными бактерицидными, но и альгицидными свойствами.

Пример 1.

В ванне с дистиллированной водой растворяют молочную кислоту в количестве 5 г/л. В раствор помещают серебряный и медный электроды на расстоянии 10-15 мм друг от друга.

Для приготовления раствора с одинаковым количеством ионов Cu+2 и ионов Ag+ соотношение площади медного электрода к площади серебряного электрода выбирают 3,5:1. Это объясняется тем, что количество серебра и меди, растворяющихся в процессе электролиза, зависит от их электрохимического эквивалента, а электрохимический эквивалент Ag+ больше электрохимического эквивалента Cu+2 примерно в 3,5 раза.

Режим электролиза устанавливают:

U - 12-24 В,

i - 1-5 А/дм2.

Полярность электродов меняют через каждые 5 мин. Изменение полярности электродов позволяет поочередно растворять серебряный и медный электроды, насыщая раствор ионами серебра и ионами меди. В течение всего процесса электролиза в ванне осуществляют струйную перекачку электролита с направлением струи в межэлектродное пространство.

При достижении концентрации ионов Ag+ 0,15 г/л электролиз прекращают и добавляют Н2О2 в количестве 0,4 г/л.

После растворения Ag2O концентрация ионов Ag+ достигает значения ≈0,2 г/л, концентрация ионов Cu+≈0,2 г/л.

Пример 2.

В ванне с дистиллированной водой растворяют молочную кислоту в количестве 10 г/л. В раствор помещают серебряный и медный электроды на расстоянии 10-15 мм друг от друга.

Для приготовления раствора с количеством ионов Cu+2, большим в два раза, чем количество ионов Ag+, соотношение площади медного электрода к площади серебряного электрода выбирают 7:1. Это объясняется тем, что количество серебра и меди, растворяющихся в процессе электролиза, зависит от их электрохимического эквивалента, а электрохимический эквивалент Ag+ больше электрохимического эквивалента Cu+2 примерно в 3,5 раза.

Режим электролиза устанавливают:

U - 12-24 В,

i- 1-5 А/дм2.

Полярность электродов меняют через каждые 5 мин. Изменение полярности электродов позволяет поочередно растворять серебряный и медный электроды, насыщая раствор ионами серебра и ионами меди. В течение всего процесса электролиза в ванне осуществляют струйную перекачку электролита с направлением струи в межэлектродное пространство.

При достижении концентрации ионов Ag+ 0,15 г/л электролиз прекращают и добавляют Н2О2 в количестве 0,4 г/л.

После растворения Ag2O концентрация ионов Ag+ достигает значения ≈0,2 г/л, концентрация ионов Cu+2 ≈0,4 г/л.

Предлагаемый дезинфицирующий водный раствор (варианты) имеет следующие преимущества:

высокий уровень обеззараживания в отношении широкого круга микроорганизмов,

стабильность при хранении,

экологическую безопасность и технологическую безотходность,

взрыво- и пожарную безопасность,

простоту получения активно действующего вещества.

Применение заявляемого раствора позволяет иметь в арсенале народного хозяйства нетоксичный, бактерицидный, с высокой степенью стойкости дезинфицирующий водный раствор, который может быть применен для дезинфекции и стерилизации различных как стационарных бытовых объектов, так и объектов в полевых условиях.

1. Дезинфицирующий водный раствор, содержащий ионы серебра, полученные путем электролиза, дистиллированную воду и пищевую кислоту, отличающийся тем, что он содержит в качестве пищевой кислоты молочную кислоту, а также 33%-ную перекись водорода при следующем соотношении компонентов, г.л:

Ионы серебра Ag+ 0,01-1,5
Молочная кислота 1-50
Перекись водорода 33%-ная 0,1-3
Дистиллированная вода Остальное

при этом электролиз осуществляют с использованием двух серебряных электродов при периодической смене их полярности.

2. Дезинфицирующий водный раствор, содержащий ионы серебра, полученные путем электролиза, дистиллированную воду и пищевую кислоту, отличающийся тем, что он содержит в качестве пищевой кислоты молочную кислоту, ионы меди, полученные путем электролиза, а также 33%-ную перекись водорода при следующем соотношении компонентов, г/л:

Ионы серебра Ag+ 0,01-1,5
Ионы меди Cu+ 0,04-4
Молочная кислота 1-50
Перекись водорода 33%-ная 0,1-3
Дистиллированная вода Остальное

при этом электролиз осуществляют с использованием серебряного и медного электродов при периодической смене их полярности.



 

Похожие патенты:

Изобретение относится к производным оксазолидинона формулы (I) или их фармацевтически приемлемым солям, способу их получения и фармацевтическим композициям, содержащим указанные производные, применяемые в качестве антибиотика.

Изобретение относится к медицине и касается способа стабилизации альбумина для изготовления на его основе фармацевтических биопрепаратов с дополнительными антибиотическим (гентамицин) или иммуномодулирующим (стимаден) механизмами действия путем модификации белка совиалем.

Изобретение относится к химико-фармацевтической промышленности, а именно к созданию средства, обладающего противовоспалительным и антибактериальным действием, представляющее собой сухой полиэкстракт, состоящий их сухих экстрактов следующего растительного сырья: ортосифона тычиночного (лист), толокнянки обыкновенной (листья), горца птичьего (трава), календулы лекарственной (цветки), солодки уральской (корень).

Изобретение относится к олигосахариду, пригодному для вакцины против менингита А, включающему первую маннозную единицу, имеющую спейсер в альфа-конфигурации в С-1, где указанный спейсер способен к конъюгации с белком, и соединенную со второй маннозной единицей посредством 1,6-связи, которая соединяет С-6 первой единицы с С-1 второй единицы, при этом 1,6-связь включает фосфонат.

Изобретение относится к области химико-фармацевтической и пищевой промышленности, а именно к области создания жидких форм лекарственных препаратов и биологически активных добавок к пище, с широким спектром фармакологического действия, а именно общеукрепляющим, противовоспалительным, противомикробным, противовирусным, иммуномодулирующим и антиоксидантным действием.

Изобретение относится к новым антибактериальным соединениям формулы (I) Соединения формулы (I) где Q означает группу следующей структуры R1 означает водород, галоген, гидрокси, амино, меркапто, алкил, гетероалкил, алкилокси, гетероалкилокси, циклоалкил, гетероциклоалкил, алкилциклоалкил, гетероалкилциклоалкил, циклоалкилокси, алкилциклоалкилокси, гетероциклоалкилокси или гетероадкилциклоалкилокси, X1, X2, X3, X4, X 5 и X6 каждый независимо друг от друга означает атом азота или группу формулы CR2, R2 означает водород, галоген или гидрокси, амино, алкильную, алкенильную, алкинильную или гетероалкильную группу, R3 выбран из следующих групп R5 означает группу формулы -B-Y, где В означает алкилен, алкенилен, алкинилен, -NH- или гетероалкилен, a Y означает арил, гетероарил, аралкил, гетероаралкил, циклоалкил, гетероциклоалкил, алкилциклоалкил или гетероалкилциклоалкил, или их фармацевтически приемлемую соль, сольват, гидрат или фармацевтически приемлемую композицию, а также к фармацевтической композиции, обладающей антибактериальной активностью, на основе этих соединений и к их применению для приготовления лекарственного средства, предназначенного для лечения бактериальных инфекций.

Изобретение относится к фармацевтической промышленности, в частности к средству для профилактики и лечения нарушений нормальной микрофлоры. .
Изобретение относится к области сельского хозяйства, преимущественно к ветеринарии, и может быть использовано для профилактики мастита крупного рогатого скота. .

Изобретение относится к бактерицидным содержащим амидные группы макроциклам формулы (I), в которой R26 обозначает водород или метил, R7 обозначает группу формулы (II), (III), (IV) или (V), где R1 обозначает водород или гидроксигруппу и * указывает положение связывания с атомом углерода, R2 обозначает водород или метил, и способы их получения, их применение для приготовления лекарственных средств, обладающих бактерицидной активностью.
Изобретение относится к области промышленного птицеводства. .
Изобретение относится к области биотехнологии и представляет собой дезинфицирующий препарат для нейтрализации спор и вегетативных клеток Bacillus anthracis, представляющий собой водный раствор, содержащий смесь бактериофагов Bacillus anthracis OZR-1, Bacillus anthracis Ф-2, Bacillus anthracis ФАУТ при соотношении активностей (БОЕ/см3) Bacillus anthracis OZR-1: Bacillus anthracis Ф-2: Bacillus anthracis ФАУТ=1:(0,2-1):(0,1-1) и активатор прорастания спор L-аланин.

Изобретение относится к области очистки сосудов в перевернутом положении. .

Изобретение относится к ветеринарной медицине и птицеводству. .

Изобретение относится к ветеринарии и птицеводству. .

Изобретение относится к кассетам для подачи стерилизующего вещества в стерилизатор. .

Изобретение относится к области санитарии и гигиены. .

Изобретение относится к санитарной паразитологии и может быть применено в санитарно-эпидемиологическом надзоре и экологии. .
Наверх