Способ нанесения покрытия

Изобретение относится к машиностроению и может быть использовано для нанесения покрытия на поверхность металлических изделий, таких как лопатки компрессора газотурбинных двигателей и установок, с целью повышения их служебных характеристик. Способ включает подготовку поверхности изделия, размещение в зоне обработки изделия и токопроводящего материала, создание вакуума, подачу отрицательного потенциала на изделие и отдельно на токопроводящий материал, возбуждение на токопроводящем материале вакуумной дуги с образованием плазмы, бомбардировку, очистку и нагрев изделия ионами токопроводящего материала, накопление и диффузию ионов на поверхности изделия в среде реакционного газа с образованием покрытия, кроме того, перед размещением изделия в зоне обработки на его поверхность наносят слой сплава на основе никеля толщиной 4-10 мкм, в качестве токопроводящего материала используют хром или его сплав, при этом одновременно с накоплением и диффузией ионов токопроводящего материала проводят бомбардировку поверхности ионами инертного газа с энергией 10-40 кэВ. Технический результат - повышение стойкости металлического изделия к солевой коррозии, повышение жаростойкости при сохранении эрозионной стойкости. 2 з.п. ф-лы, 1 табл.

 

Изобретение относится к машиностроению и может быть использовано для нанесения покрытия на поверхность металлических изделий, таких как лопатки компрессора газотурбинных двигателей и установок, с целью повышения их служебных характеристик.

Способ нанесения покрытия на поверхность металлического изделия путем бомбардировки ее ионами металлической плазмы широко известен в науке и технике. Способ включает предварительную подготовку поверхности, размещение изделия в вакуумной камере, генерацию в вакуумной камере плазмы материала модификатора одним из известных методов, формирование из плазмы ускоренного ионного пучка, направленного на поверхность обрабатываемого изделия, или непосредственную обработку поверхности изделия ионами плазмы при подаче на изделие отрицательного электрического потенциала. Вследствие внедрения ионов плазмы в поверхностный слой путем диффузии или имплантации и создания искажений в кристаллической решетке под действием ионной бомбардировки, а также изменения элементного состава поверхностного слоя происходит модифицирование поверхностного слоя детали за счет ее легирования, приводящее к изменению эксплуатационных свойств детали (Модифицирование и легирование поверхности лазерными, ионными и электронными пучками. Под редакцией Дж.М.Поута, Г.Фоти, Д.К.Джекобсона. М.: Машиностроение. - 1987. - 424 с.).

Недостатком известного способа является низкая плотность ионного тока на поверхности изделия, а соответственно и низкая скорость обработки поверхности изделия, что ограничивает его применение в машиностроении.

Известен способ нанесения износостойких покрытий и повышения долговечности изделий, включающий нанесение на металлическую подложку катодным распылением трехслойного покрытия из чередующихся слоев, при этом первый слой получают в разряде нейтрального газа из одного или смеси переходных металлов IVA-VIA групп, второй - осаждением указанных металлов в смеси нейтрального и реакционных газов, а третий слой - осаждением в смеси нейтрального и реакционных газов нитридов, или карбидов, или боридов, или их смесей указанных металлов (Патент РФ №2161661).

Известен также способ нанесения многослойного покрытия на металлические изделия, включающий проведение перед нанесением многослойного покрытия ионной имплантации ионами азота и постимплантационный отпуск, совмещенный с нанесением многослойного покрытия, которое наносят многократным чередованием слоев титана, ε-нитрида титана и α-титана, причем постимплантационный отпуск и нанесения многослойного покрытия проводят в одном вакуумном объеме за один технологический цикл (Патент РФ №2226227).

Недостатком известных способов является сложность технологии и высокая трудоемкость (много технологических переходов и технологических операций), низкая стойкость многослойных структур к эрозионному износу при лобовом ударе и относительно низкая их коррозионная стойкость и жаростойкость, приводящая к отслаиванию слоев покрытия при повышенных температурах.

Наиболее близким аналогом, взятым за прототип, является способ обработки поверхности металлического изделия, включающий предварительную подготовку поверхности изделия, размещение в зоне обработки изделия и токопроводящего материала, создание вакуума в зоне обработки, подачу отрицательного потенциала на изделие и отдельно на токопроводящий материал, возбуждение на токопроводящем материале вакуумной дуги, горящей в парах этого материала с образованием плазмы, бомбардировку, очистку и нагрев поверхности изделия ионами токопроводящего материала, накопление и диффузию ионов токопроводящего материала на поверхности изделия при температуре поверхности изделия ниже температуры разупрочнения материала изделия, с образованием покрытия, где в качестве токопроводящего материала используют цирконий или сплав на основе циркония, а накопление и диффузию ионов токопроводящего материала на поверхности изделия проводят при отрицательном потенциале на изделии 150-400 В в среде реакционного газа (Патент РФ №2308537).

Недостатками способа-прототипа являются недостаточная стойкость покрытия к солевой коррозии и жаростойкость при температуре 600-650°С.

Технической задачей изобретения является разработка способа нанесения покрытия, обеспечивающего повышение стойкости металлического изделия к солевой коррозии, жаростойкости, при сохранении его эрозионной стойкости.

Для достижения поставленной задачи разработан способ нанесения покрытия, преимущественно на стальные детали и лопатки компрессора газотурбинного двигателя, включающий предварительную подготовку поверхности изделия, размещение в зоне обработки изделия и токопроводящего материала, создание вакуума в зоне обработки, подачу отрицательного потенциала на изделие и отдельно на токопроводящий материал, возбуждение на токопроводящем материале вакуумной дуги, горящей в парах этого материала с образованием плазмы, бомбардировку, очистку и нагрев поверхности изделия ионами токопроводящего материала, накопление и диффузию ионов токопроводящего материала на поверхности изделия при отрицательном потенциале на изделии в среде реакционного газа, с образованием покрытия, в котором перед размещением в зоне обработки изделия на его поверхность наносят слой сплава на основе никеля толщиной 4-10 мкм, в качестве токопроводящего материала используют хром или сплав на основе хрома, при этом одновременно с накоплением и диффузией ионов токопроводящего материала на поверхности изделия проводят дополнительно ее бомбардировку ионами инертного газа с энергией 10-40 кэВ.

Слой сплава на основе никеля наносят на поверхность изделия магнетронным или вакуумно-дуговым осаждением.

В качестве реакционного газа используют ацетилен при давлении 0,1-0,3 Па.

Установлено, что при нанесении покрытия из сплава на основе хрома на подслой из никелевого сплава в атмосфере реакционного газа - ацетилена формируется твердый карбид хрома. Твердый подслой из сплава на основе никеля благодаря КТР (коэффициент термического расширения), близкому к стали и верхнему слою из карбида хрома, обеспечивает надежную адгезионную прочность покрытия и минимальный уровень остаточных напряжений в системе подложка-покрытие.

Нанесенный слой из никелевого сплава с карбидным упрочнением обеспечивает коррозионную стойкость системы «основа-покрытие», препятствуя проникновению коррозионной среды в глубину материала изделия за счет плотной структуры и состава легирующих элементов.

Дополнительная бомбардировка ионами инертного газа во время нанесения сплава на основе хрома в атмосфере реакционного газа позволяет сформировать более плотный карбид хрома, увеличивая его эрозионные свойства.

Наличие твердого металлического подслоя из сплава на основе никеля с карбидным упрочнением и верхнего слоя на основе плотного карбида хрома обеспечивает высокую жаростойкость, коррозионную и эрозионную стойкость композиции основа-покрытие.

Примеры осуществления

Пример 1. Для нанесения покрытия на поверхность изделия, например рабочей лопатки компрессора газотурбинного двигателя из стали ЭП866, проводили предварительную подготовку поверхности изделий (удаление загрязнений и обезжиривание). Нанесение покрытия на поверхность металлического изделия проводили на промышленной ионно-плазменной установке МАП-3 с компьютерной системой управления технологическим процессом, имеющей газоразрядный источник ионов аргона Е×Н типа с током до 200 мА и напряжением до 3 кВ, вакуумно-дуговой генератор плазмы токопроводящего материала с током до 750 А, систему для подачи в вакуумный объем реакционного газа и регулирования его давления, систему для подачи и регулирования напряжения на обрабатываемые изделия в диапазоне от 0 до 900 В, газоразрядный ионный ускоритель с током до 40 мА и напряжением до 40 кВ, а также планетарный привод вращения на 24 позиции для размещения обрабатываемых изделий. Затем размещали в зоне обработки изделие, с предварительно нанесенным одним из известных способов, например магнетронным или вакуумно-дуговым осаждением, слоем (толщиной 4 мкм) из сплава на основе никеля (СДП-2), и токопроводящий материал - сплав на основе хрома (ВХ1) и создавали в зоне обработки вакуум при давлении Р≤0,1 Па. Затем опускали газоразрядный источник ионов аргона в зону обработки изделия и начинали процесс ионной очистки поверхности изделия бомбардировкой ионами инертного газа (аргона) с энергией 0,5-3 кВ. После завершения процесса (процесс длится 15-20 минут) газоразрядный источник ионов аргона удаляли из зоны обработки изделия и подавали отрицательный потенциал на токопроводящий материал φ1=-(80-100) В и отдельно на лопатку φ2=-(300-600) В. Затем включали газоразрядный ионный ускоритель с параметрами: ток ионного пучка 30 мА, ускоряющее напряжение 10 кВ, и начинали бомбардировку изделий ионами аргона. После чего одним из известных способов, например путем разрыва токового контакта, на токопроводящем материале возбуждали вакуумную дугу, горящую в парах этого материала с образованием плазмы токопроводящего материала (сплава на основе хрома). Процесс ионной бомбардировки поверхности изделия ионами токопроводящего материала очистки и ионного нагрева поверхности изделия проводили при φ2=-300 В и токе вакуумной дуги 600 А. Процесс очистки поверхности изделия и ее термоактивации длился ~3 минуты (контроль по снижению частоты пробоев в цепи источника подачи потенциала на деталь до 5-20 Гц). Дополнительно проводили бомбардировку поверхности ионами (энергия ионов 10 кэВ) с одновременным накоплением и диффузией ионов токопроводящего материала на поверхности изделия при отрицательном потенциале на изделии 100-200 В при давлении 0,15 Па и температуре поверхности изделия 500-520°С, что ниже температуры ее разупрочнения на 100°С.

По способу-прототипу покрытие наносили на изделие из стали ЭП 866.

Полученные образцы и лопатки подвергались следующим исследованиям и испытаниям:

- на коррозионную стойкость по методике ускоренных испытаний, включающей выдержку в спокойной атмосфере печи при температуре 650°С в течение 1 ч, охлаждение в 3% p-pe NaCl и выдержку в эксикаторе в течение 22 ч;

- на жаростойкость в спокойной атмосфере печи при температуре 650°С в течение 500 ч, после чего определяли удельный привес (Δmуд, г/м2) после проведения испытаний и сравнивали внешний вид образцов;

- на относительную эрозионную стойкость при углах атаки 20 и 70 град. пылевоздушного потока на основе речного песка с фракцией до 700 мкм и расходе песка 1,23 кг. Определяли отношение уноса массы образцов с покрытием к уносу массы без покрытия при углах атаки 20 и 70 град. - ε20 и ε70;

Примеры 2, 3 аналогичны примеру 1, но в примере 2 наносят слой сплава на основе никеля - СДП-1, а в примере 3 - ВЖЛ-2, параметры способа и свойства изделий с покрытием приведены в таблице.

Таблица
№, № Токопроводящий материал/ энергия ионов Ar, кэВ Толщина слоя сплава на основе никеля, мкм Жаростойкость 100 ч, г/м2 при t=650°C Коррозионная стойкость при t=650°C, циклы до появления точек коррозии Относительный эрозионный унос
ε20 ε70
1 Cr/10 4 1,5 10 0,1 0,06
2 Cr/30 7 1,39 12 0,07 0,04
3 Cr/40 10 1,2 15 0,04 0,04
4 Прототип Zr - 3,5 5 0,1 0,06

Нанесение покрытия на сталь ЭП866 приводит по сравнению с прототипом к повышению жаростойкости в 2-2,5 раза и в 2-3 раза стойкости поверхности к солевой коррозии, при сохранении высокой эрозионной стойкости.

Применение изобретения в промышленности для нанесения покрытия на поверхность стальных лопаток компрессора газотурбинных двигателей и установок повышает их надежность и ресурс.

1. Способ нанесения покрытия на металлические изделия, преимущественно на стальные детали и лопатки компрессора газотурбинного двигателя, включающий предварительную подготовку поверхности изделия, размещение в зоне обработки изделия и токопроводящего материала, создание вакуума в зоне обработки, подачу отрицательного потенциала на изделие и отдельно на токопроводящий материал, возбуждение на токопроводящем материале вакуумной дуги, горящей в парах этого материала с образованием плазмы, бомбардировку, очистку и нагрев поверхности изделия ионами токопроводящего материала, накопление и диффузию ионов токопроводящего материала на поверхности изделия при отрицательном потенциале на изделии в среде реакционного газа с образованием покрытия, отличающийся тем, что перед размещением в зоне обработки изделия на его поверхность наносят слой сплава на основе никеля толщиной 4-10 мкм, в качестве токопроводящего материала используют хром или сплав на основе хрома, при этом одновременно с накоплением и диффузией ионов токопроводящего материала на поверхности изделия проводят дополнительную бомбардировку поверхности ионами инертного газа с энергией 10-40 кэВ.

2. Способ по п.1, отличающийся тем, что слой сплава на основе никеля наносят на поверхность изделия магнетронным или вакуумно-дуговым осаждением.

3. Способ по п.1, отличающийся тем, что в качестве реакционного газа используют ацетилен при давлении в диапазоне 0,1-0,3 Па.



 

Похожие патенты:
Изобретение относится к металлургии и может быть использовано в авиационном и энергетическом турбиностроении для защиты лопаток турбин от высокотемпературного окисления и сульфидной коррозии.
Изобретение относится к металлургии, а именно к химико-термической обработке металлов и сплавов, в частности к ионному азотированию в плазме тлеющего разряда, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей сложной конфигурации, режущего инструмента и штамповой оснастки.

Изобретение относится к машиностроению и может быть использовано для модифицирования поверхности деталей машин с целью повышения их служебных характеристик. .

Изобретение относится к изготовлению покрытий из металлов на изделиях различного назначения и может быть использовано в электротехнической, радиотехнической, ювелирной и других отраслях промышленности.
Изобретение относится к изготовлению покрытий из металлов на изделиях различного назначения и может быть использовано в электротехнической, радиотехнической, ювелирной и других отраслях промышленности.

Изобретение относится к детали, в частности к лопатке газовой турбины, содержащей основную часть и расположенный на ней теплоизоляционный слой, который имеет столбчатую структуру с керамическими столбиками, которые в большинстве направлены в основном перпендикулярно поверхности основной части.

Изобретение относится к машиностроению и может быть использовано для модифицирования поверхности деталей машин. .

Изобретение относится к получению защитных покрытий на изделиях авиационной техники, преимущественно на деталях газотурбинных двигателей. .
Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом газотурбиностроении для защиты пера лопаток турбин от высокотемпературного окисления и коррозии.

Изобретение относится к машиностроению и может бить использовано при обработке поверхности посредством имплантации ионов реакционных газов в поверхность длинномерных отверстий металлических изделий на установках ионной имплантации для повышения их поверхностной твердости, коррозионной стойкости и иэносостойкости.

Изобретение относится к нанотехнологии, в частности к плазменным методам осаждения наночастиц на подложку, которые могу быть использованы в качестве катализаторов, как чувствительные элементы датчиков и как магнитные запоминающие среды

Изобретение относится к получению углеродных наноструктур и позволяет получить углеродные частицы в виде порошка, что значительно расширяет их применение, упростить способ и устройство получения углеродных наноструктур, а также повысить коэффициент полезного действия. В способе получения углеродных наноструктур, включающем зажигание в вакуумной камере тлеющего разряда при постоянном электрическом токе, в прикатодную область вакуумной камеры в канал разряда аксиально и тангенциально подают углеводородный газ, а обработку углеводородного газа осуществляют при определенных параметрах тлеющего разряда. Во втором варианте способа в прикатодную область вакуумной камеры в канал разряда аксиально подают смесь инертного газа с частицами порошка углерода и тангенциально подают инертный газ. В устройстве для получения углеродных наноструктур, содержащем вакуумную камеру с размещенными в ней электродами, блок питания постоянного тока, подключенный к аноду и катоду, вакуумная камера имеет первые тангенциальные входы в прикатодную область для подачи углеводородного газа и второй аксиальный вход со стороны катода для подачи углеводородного газа, электроды размещены в вакуумной камере на расстоянии R=20÷100 мм друг от друга. Во втором варианте устройства вакуумная камера имеет первые тангенциальные входы в прикатодную область для подачи инертного газа, и второй аксиальный вход со стороны катода для подачи смеси инертного газа с частицами порошка углерода. 4 н. и 2 з.п. ф-лы, 4 ил.
Изобретение относится к области получения и производства фильтрующих материалов для очистки воздуха промышленных помещений на основе полимерных волокон, обладающих антибиотическими свойствами. Осуществляют синтез полимера на фильтрующем материале в низкотемпературной плазме тлеющего разряда в парах адамантана. Вначале камеру с фильтрующим материалом вакуумируют, подают аргон и проводят газоразрядную очистку материала. После очистки камеру вновь вакуумируют и напускают пары адамантана с последующим зажиганием тлеющего разряда для получения тонкого покрытия на поверхности материала. Изобретение позволяет придать поверхности фильтрующего материала антибиотические (антифунгальные) свойства. 1 пр.
Изобретение относится к способу получения покрытия на поверхности элемента статора энергетических турбин. Способ включает нанесение покрытия методом плазменного напыления. Порошок покрытия напыляют под углом 55-70 градусов по отношению к поверхности напыления. Скорость перемещения горелки относительно напыляемой поверхности элемента статора 0,5-1,0 м/с. Площадь пятна напыления на поверхности элемента статора составляет 1,7-5,0 см2. Техническим результатом является отсутствие трещин и расслоений в покрытии за счет снижения нагрева напыляемой поверхности в 3-4 раза, увеличение прочностных свойств покрытия, при этом увеличивается также коэффициент использования напыляемого порошка. 1 табл.
Изобретение относится к области получения и производства полимерных материалов, обладающих антибиотическими свойствами за счет создания тонкого покрытия. Синтез тонкого покрытия на поверхности изделия осуществляют в низкотемпературной плазме тлеющего разряда в парах 3-нитро-1-адамантановой кислоты. Сначала камеру с изделием вакуумируют, подают аргон и проводят газоразрядную очистку поверхности материала изделия при давлении 80 Па и плотности тока 2-5 А/м2. После очистки камеру вновь вакуумируют и напускают пары 3-нитро-1-адамантановой кислоты до давления 30-100 Па с последующим зажиганием тлеющего разряда для синтеза покрытия на поверхности изделия. 2 пр.
Изобретение относится к области обработки поверхности инструментальных материалов и может быть использовано для создания покрытия в виде пленки нитрида титана на твердосплавных подложках, таких как режущие пластины, предназначенных для обработки труднообрабатываемых материалов. Способ включает очистку поверхности пластин бомбардировкой ионами и последующее напыление TiN на поверхность пластин путем осаждения в реакционном газе - азоте ионов титана из плазмы, сформированной вакуумно-дуговым генератором в направлении анода, расположенного внутри катода, при этом в качестве анода используют набор твердосплавных пластин, имеющих общую площадь поверхности Sa, удовлетворяющую условию: Sa<(2m/M)l/2S, где S - площадь поверхности полого катода; m и М - соответственно масса электрона и иона. Техническим результатом изобретения является повышение качества покрытия. 1 пр.

Изобретение относится к способу ионно-плазменного напыления покрытий на изделия в вакууме и устройству для его осуществления и может найти применение в металлургии, плазмохимии и машиностроительной промышленности. Изделия размещают внутри плазменного устройства, содержащего мишень из распыляемого материала. Осуществляют наложение сконфигурированного электрического и магнитного полей в условиях тлеющего плазменного разряда, сжатие плазменного потока и его локальную фокусировку в центре вершины мишени с образованием на ее поверхности локального плазменного пятна в пределах 1 мм2. Устройство включает размещаемую внутри вакуумной камеры и заполняемую в процессе работы плазмообразующим газом плазменную ячейку. Ячейка образована между двумя параллельно расположенными пластинами и содержит расположенные соосно катод, мишень из распыляемого материала, анод и фокусирующие электроды. Катод выполнен в виде стержневого держателя мишени. Напыляемые изделия закреплены в одном из фокусирующих электродов. Катод с мишенью установлен внутри полого цилиндрического магнита, имеющего осевую намагниченность. В результате получают покрытия высокого качества при снижении потребляемой мощности устройства. 2 н.п. ф-лы, 2 ил.

Изобретения относятся к способу и устройству для нанесения покрытий в вакууме. Напускают в вакуумную камеру рабочий газа. В качестве источника осаждаемых частиц используют катод с мишенью. При зажигании тлеющего разряда устанавливают давление в газоразрядной камере ниже Р=10-2 Торр, создают разные концентрации частиц газа в различных областях межэлектродного пространства путем создания сверхзвукового потока рабочего газа со скоростью более V=300 м/с в заданной области межэлектродного зазора в поперечном к электрическому полю направлении. Устройство нанесения покрытий содержит газоразрядную камеру и размещенные в ней катод с мишенью и анод, газоввод для напуска рабочего газа в виде сверхзвукового сопла, являющегося диффузором, конфузор, причем конфузор и диффузор установлены в межэлектродном пространстве в газоразрядной камере соосно друг против друга с обеспечением расположения оси конфузора и диффузора в направлении, поперечном к оси анода и катода, на заданном расстоянии относительно анода и катода. Изобретение позволяет получить высокую скорость нанесения покрытий при низких давлениях, что повышает чистоту процесса, а также упрощает конструкцию устройства. 2 н.п. ф-лы, 3 ил.
Наверх