Способ определения физических свойств жидкостей или газов



Способ определения физических свойств жидкостей или газов

 


Владельцы патента RU 2415409:

Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН (RU)

Изобретение относится к области измерительной техники и может быть использованы для высокоточного определения различных физических свойств (плотности, концентрации, смеси веществ, влагосодержания и др.) веществ (жидкостей, газов), находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.) и перемещаемых по трубопроводам. Способ определения физических свойств жидкостей или газов включает возбуждение электромагнитных волн фиксированной частоты в отрезке длинной линии с оконечным нагрузочным сопротивлением в виде чувствительного элемента с образованием стоячей электромагнитной волны и размещение контролируемого вещества в электромагнитном поле нагрузочного сопротивления. Согласно изобретению в предложенном способе предварительно устанавливают минимум напряженности поля стоячей волны в фиксированном сечении отрезка длинной линии при некотором номинальном значении определяемого физического свойства контролируемого вещества, в процессе измерения изменяют частоту возбуждаемых электромагнитных волн до достижения напряженностью поля стоячей волны ее минимума в указанном фиксированном сечении отрезка длинной линии и о физических свойствах вещества судят по величине этой частоты. Изобретение обеспечивает повышение точности измерений. 1 ил.

 

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (плотности, концентрации, смеси веществ, влагосодержания и др.) веществ (жидкостей, газов), находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.) и перемещаемых по трубопроводам. В частности, оно может быть применено в винодельческой промышленности для измерения концентрации водо-спиртовых растворов, виноматериалов и вин, содержания сахара в них и др.

Известны различные способы определения физических свойств веществ, основанные на измерении их электрофизических параметров с применением радиочастотных датчиков, содержащих контролируемое вещество (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука, 1989. 280 с.).

Известно также техническое решение (SU 867923, 30.09.1981), которое по технической сущности наиболее близко к предлагаемому способу и принято в качестве прототипа. Это техническое решение реализуется согласно способу, который заключается в возбуждении электромагнитных волн в волноводе, в частности в отрезке длинной линии, оконечной нагрузкой которого является чувствительный элемент, контактирующий с контролируемым веществом. Измеряя напряженность поля стоячей волны в каком-либо сечении вдоль отрезка длинной линии, судят о величине физического свойства вещества. Недостатком этого способа является невысокая точность измерения, обусловленная проведением амплитудных измерений.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат в предлагаемом способе определения физических свойств жидкостей или газов, включающий возбуждение электромагнитных волн фиксированной частоты в отрезке длинной линии с оконечным нагрузочным сопротивлением в виде чувствительного элемента с образованием стоячей электромагнитной волны и размещение контролируемого вещества в электромагнитном поле нагрузочного сопротивления, достигается тем, что при этом предварительно устанавливают минимум напряженности поля стоячей волны в фиксированном сечении отрезка длинной линии при некотором номинальном значении определяемого физического свойства контролируемого вещества, в процессе измерения изменяют частоту возбуждаемых электромагнитных волн до достижения напряженностью поля стоячей волны ее минимума в указанном фиксированном сечении отрезка длинной линии и о физических свойствах вещества судят по величине этой частоты.

Предлагаемый способ поясняется чертежом, изображающим схему устройства для его реализации. Здесь введены обозначения: 1 - генератор, 2 - отрезок длинной линии, 3 - чувствительный элемент, 4 - детектор, 5 - блок перестройки частоты генератора, 6 - индикатор.

Способ реализуется следующим образом.

При возбуждении с помощью генератора 1 фиксированной частоты электромагнитных волн в отрезке длинной линии 2, к концу которого подсоединено нагрузочное сопротивление - чувствительный элемент 3, в отрезке длинной линии имеет место интерференция возбуждаемых и отраженных от чувствительного элемента волн. Она характеризуется режимом стоячих (точнее, смешанных) смешанных волн. Напряженность поля стоячей электромагнитной волны в какой-либо точке вдоль отрезка длинной линии является функцией нагрузочного сопротивления отрезка длинной линии, т.е. величины измеряемого параметра (физического свойства вещества). При отклонении этой величины от ее некоторого номинального значения, соответствующего определенному значению измеряемого параметра, напряженность поля стоячей волны в указанной точке также изменяется. Проведение частотных измерений позволяет получать полезную информацию независимо от нестабильности напряженности поля возбуждаемой электромагнитной волны.

Напряженности E1(z) и Е2(z) полей волн в каком-либо сечении с координатой z вдоль отрезка длинной линии, распространяющихся в противоположном направлении (первая волна - от генератора, вторая волна - от нагрузочного сопротивления) есть

где Е1 и Е2 - амплитуды величин E1(z) и E2(z); ƒ0 - частота возбуждаемых электромагнитных волн; φ - разность фаз встречных волн, зависящая от величины нагрузочного сопротивления и, следовательно, от величины измеряемого параметра x.

Напряженность поля стоячей электромагнитной волны в сечении с координатой z вдоль отрезка длинной линии при этом есть

Из формулы (3) следует, что напряженность поля стоячей волны в сечении с координатой z зависит как от разности фаз φ, так и от амплитуд Е1 и Е2. Эта разность фаз может быть определена независимо от Е1 и E2 по изменению положения какого-либо выбранного значения амплитуды Е, в частности по смещению положения одного из минимумов поля стоячей волны. Указанные минимумы расположены, как следует из (3), в сечениях с координатами zn (n=0, 1, 2,…) вдоль отрезка длинной линии:

Если вследствие изменения величины измеряемого параметра x имеет место фазовый сдвиг Δφ(x) относительно значения разности фаз φ=φ0, соответствующего некоторому номинальному значению х0 измеряемого параметра x, то каждый минимум поля стоячей волны перемещается вдоль отрезка длинной линии, как следует из (4), на расстояние

Отсюда видно, что величина Δz(x) не зависит от Е1, E2 и n, а является функцией только Δφ(x) и ƒ0. Величина Δφ зависит, в свою очередь, от реактивной (емкостной, индуктивной) составляющей нагрузочного сопротивления, функционально связанного с измеряемым параметром x.

Для определения величины измеряемого параметра x осуществляют, согласно предлагаемому способу, изменение частоты ƒ0 возбуждаемой электромагнитной волны на такую величину Δƒ до значения ƒ=ƒ0+Δƒ. При фиксированной частоте ƒ генератора восстанавливается положение минимума поля стоячей волны в сечении отрезка длинной линии с координатой zk, k=0, 1, 2,…, в котором подсоединен детектор.

Как видно из рассмотрения формулы (5), требуемое изменение частоты Δƒ возбуждаемой электромагнитной волны можно найти из соотношения

Отсюда находим

Следовательно, изменение частоты ƒ0 возбуждаемой волны на величину Δƒ приводит к восстановлению минимума напряженности поля стоячей волны в указанном сечении с координатой zk вдоль отрезка длинной линии. Частота Δƒ является мерой отклонения величины измеряемого параметра от его номинального значения x0, и значит, частота ƒ=ƒ0+Δƒ служит мерой величины самого измеряемого параметра х.

В реализующем предлагаемый способ устройстве от генератора 1 фиксированной частоты электромагнитные колебания поступают в отрезок длинной линии 2. К его противоположному концу подсоединен чувствительный элемент 3. Его эквивалентная электрическая схема может содержать, в зависимости от электрофизических параметров контролируемого вещества, электрическую емкость, индуктивность или их совокупность; может быть также подсоединен дополнительно резистор, характеризуя наличие диэлектрических потерь в контролируемом веществе.

С изменением величины измеряемого параметра происходит изменение, в частности, емкостной составляющей нагрузочного сопротивления, что предопределяет ее конструкцию, т.е. конструкцию чувствительного элемента 3. Чувствительным элементом 3 может являться, например, коаксиальный конденсатор (измерительная ячейка), заполняемый контролируемым веществом. Если контролируемое вещество является несовершенным диэлектриком или электропроводным веществом, то при покрытии внутреннего проводника указанного коаксиального конденсатора диэлектрической оболочкой контролируемое вещество в нем характеризуется эффективной диэлектрической проницаемостью двухслойного диэлектрика - вещества и диэлектрической оболочки (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука, 1989. С.125-131). При этом такое нагрузочное сопротивление становится емкостным. Величина измеряемого параметра определяется с учетом известных значений параметров такого чувствительного элемента (геометрических параметров конденсатора и диэлектрической проницаемости оболочки).

В некотором сечении вдоль отрезка длинной линии 2 к нему подсоединен детектор 4, с выхода которого продетектированный сигнал поступает в блок перестройки частоты генератора 5, подключенный выходом к генератору 1. В зависимости от амплитуды продетектированного сигнала, определяемой значением напряженности поля стоячей волны в указанном сечении с координатой zk, изменяется частота генератора 1. Величина этого изменения частоты Δƒ выражается формулой (7). При измерениях предварительно выбором частоты генератора ƒ0 или (и) длины отрезка длинной линии устанавливают минимум напряженности поля стоячей волны в указанном сечении с координатой zk при некотором номинальном значении x0 определяемого физического свойства вещества. Возбуждение в отрезке длинной линии электромагнитной волны на фиксированной частоте ƒ, измененной на величину Δƒ относительно частоты ƒ0, приводит к восстановлению в указанном сечении с координатой zk минимума поля стоячей волны. По величине ƒ, фиксируемой индикатором 6, подключенным к генератору 1, можно судить о величине измеряемого параметра x (физического свойства вещества).

Таким образом, предлагаемый способ характеризуется проведением высокоточных частотных измерений вместо амплитудных измерений, что приводит к существенному увеличению точности измерения.

Данный способ может быть применен для измерения различных физических свойств веществ в измерительных ячейках (при отборе пробы вещества), а также при измерениях в технологических емкостях и в трубопроводах с перемещаемыми по ним контролируемыми веществами.

Способ определения физических свойств жидкостей или газов, включающий возбуждение электромагнитных волн фиксированной частоты в отрезке длинной линии с оконечным нагрузочным сопротивлением в виде чувствительного элемента с образованием стоячей электромагнитной волны и размещение контролируемого вещества в электромагнитном поле нагрузочного сопротивления, отличающийся тем, что предварительно устанавливают минимум напряженности поля стоячей волны в фиксированном сечении отрезка длинной линии при некотором номинальном значении определяемого физического свойства контролируемого вещества, в процессе измерения изменяют частоту возбуждаемых электромагнитных волн до достижения напряженностью поля стоячей волны ее минимума в указанном фиксированном сечении отрезка длинной линии и о физических свойствах вещества судят по величине этой частоты.



 

Похожие патенты:

Изобретение относится к устройствам для анализа воды по следующим характеристикам: мутности, цветности, температуре, результатам седиментационного анализа, электропроводности, вязкости, электрофоретической подвижности, дзета-потенциалу частиц взвеси, химической потребности в кислороде, содержанию хлора, водородному показателю и редокс-потенциалу и может быть использовано для мониторинга водных объектов, технического и питьевого водоснабжения.

Изобретение относится к способам определения различных термодинамических и условных констант равновесия неорганических и органических веществ, которые применяются в теоретической и практической области химии.

Изобретение относится к аналитическому контролю молекулярного кислорода в теплоносителе и в контурах под давлением с водным теплоносителем, в том числе в контурах исследовательских и энергетических реакторов, входящих в их состав петлевых установок, других ядерно-энергетических установок (ЯЭУ) с азотной компенсацией давления и реакторов типа ВВЭР с паровой компенсацией давления.
Изобретение относится к электроэнергетике и может быть использовано для диагностики жидких диэлектриков. .
Изобретение относится к аналитической химии органических соединений применительно к анализу фармацевтических средств и препаратов для спортивного питания. .

Изобретение относится к области физики и может быть использовано для анализа материалов с помощью биохимических электродов. .

Изобретение относится к области аналитической химии, в частности к инверсионному вольтамперометрическому способу определения флавоноида, обладающего высокой антиоксидантной активностью и клинической эффективностью в лечении ряда заболеваний.

Изобретение относится к области аналитической химии, изучающей возможность определения анавидина методом инверсионной вольтамперометрии. .

Изобретение относится к области химического и биологического анализа, в частности для электрохимического детектирования алкалоидов. .

Изобретение относится к измерительной технике, предназначенной для определения дисперсного состава жидкостных эмульсий и может быть использовано в нефтяной, нефтеперерабатывающей и химической промышленности для контроля качества разделения или приготовления жидкостных эмульсий.

Изобретение относится к медицине и описывает способ инверсионно-вольтамперометрического определения бензилпенициллина, включающий приготовление раствора меди (II) и определение ее концентрации после предварительного электровосстановления по высоте пика анодного растворения, где медь (II) переводят в комплексное соединение с бензилпенициллином, и определение бензилпенициллина проводят по разности между первоначальной концентрацией ионов меди (II) (Сн) и остаточной концентрацией ионов меди (II), не вступивших в реакцию с бензилпенициллином (Со ), в присутствии фонового электролита муравьиной кислоты, описываемой формулой CPen=2·(Сн-Со)
Изобретение относится к области аналитической химии, в частности к вольтамперометрическим способам количественного определения гормонов

Изобретение относится к медицине и описывает способ неинвазивного потенциометрического определения оксидант/антиоксидантной активности биологических тканей, включающий введение исследуемого объекта в контакт с электропроводящей средой, содержащей медиаторную систему и оценку оксидант/антиоксидантной активности по изменению разности потенциалов на электродах, введенных в электропроводящую среду, при этом электропроводящая среда представляет собой гель, содержащий в качестве медиаторной системы пару химических соединений, содержащих элемент в разных степенях окисления, при этом электроды через гель контактируют с исследуемым объектом, а оксидант/антиоксидантную активность определяют по формулам

Изобретение относится к способу приготовления высокостабильного чувствительного элемента сенсора на пероксид водорода и может быть использовано в аналитической химии, в клинической диагностике, для контроля состояния окружающей среды, в различных областях промышленности
Изобретение относится к медицине, онкологии и гематологии и может быть использовано для определения кардиотоксических осложнений у больных хроническим лимфолейкозом, получающих полихимиотерапию
Изобретение относится к области биотехнологии и пищевой промышленности, в частности к способу получения аналитического устройства - биосенсорного электрода, который может быть использован для определения содержания моно- и полисахаридов в углеводсодержащем растительном сырье и промежуточных продуктах на разных стадиях технологического процесса

Изобретение относится к фармацевтической химии и может быть использовано для количественного определения антиоксиданта коэнзима Q10 в субстанции
Изобретение относится к области биологии, а именно к физиологии растений, и может быть использовано для экспресс-способа ионометрического определения содержания калия в листьях и распределения его по физиологическим пулам

Изобретение относится к способам анализа двухкомпонентных структур на основе кремния и может использоваться в электронной промышленности
Наверх