Способ получения нанометрического монодисперсного и стабильного гидроксида магния и получаемый продукт



Способ получения нанометрического монодисперсного и стабильного гидроксида магния и получаемый продукт
Способ получения нанометрического монодисперсного и стабильного гидроксида магния и получаемый продукт
Способ получения нанометрического монодисперсного и стабильного гидроксида магния и получаемый продукт
Способ получения нанометрического монодисперсного и стабильного гидроксида магния и получаемый продукт
Способ получения нанометрического монодисперсного и стабильного гидроксида магния и получаемый продукт

 


Владельцы патента RU 2415811:

СЕРВИСЬОС АДМИНИСТРАТИВОС ПЕНЬОЛЕС, С.А. ДЕ К.В. (MX)

Изобретение относится к области химии и может быть использовано для получения нанометрического монодисперсного и стабильного Mg(OH)2 и продуктов из него. Способ включает смешение водного раствора соли магния и водного раствора щелочи, стабилизацию смешанного продукта введением разбавителя, созревание стабилизированного продукта, очистку созревшего продукта с получением частиц гидроксида магния. Водный раствор соли магния содержит поверхностно-активное вещество, представляющее собой этоксилат, и органическую кислоту. Водный щелочной раствор содержит щелочь, выбранную из группы, которая включает в себя гидроксид натрия, гидроксид калия и растворы аммиака, и диспергатор, выбранный из веществ типа полиакрилатных кислот или их солей. Разбавитель, который используется для стабилизации продукта смеси, содержит воду и тот же диспергатор, что и используемый в щелочном растворе. Разбавитель вводится при постоянном встряхивании в процессе стабилизации. В процессе стадии созревания уже стабилизированная смесь продукта подвергается механической и химической обработке при применении ультразвука, который предпочтительно находится в интервале от 20 до 45 кГц. Изобретение позволяет получать наночастцы гидроксида магния в высоких концентрациях и продукты из него. 3 н. и 12 з.п. ф-лы, 5 ил.

 

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к способу получения наночастиц, в частности к способу получения наночастиц монодисперсного и стабильного гидроксида магния, который может диспергироваться в различных средах.

ОПИСАНИЕ ПРЕДШЕСТВУЮЩЕГО УРОВНЯ ТЕХНИКИ

Гидроксид магния используется для многих различных целей, таких как: нейтрализатор сбросовых кислот в промышленных процессах; регулятор рН: стабилизатор кислот желудка, антипирен и подавитель дыма для полимерной промышленности в различных применениях.

Чтобы избежать путаницы в использовании некоторых терминов в настоящем тексте, термин «наночастица» обычно используется для обозначения частиц, которые имеют диаметр, равный или менее 100 нм, а термин «монодисперсия» используется для идентификации частиц с однородным размером в фазе дисперсии.

Известно, что свойства и функции нанометрических материалов, в данном случае гидроксида магния, должны быть изучены на благо общества.

Способы получения гидроксида магния хорошо известны, и он используется в промышленности как промежуточный продукт, главным образом в производстве огнестойких материалов. Оксиды гидратируются с получением суспензий гидроксида магния, размеры частиц которого могут колебаться от 0,05 до 10,0 мкм. Очевидно, что указанный материал не может считаться нанометрическим или стабильным. В данной заявке, в частности, желательно изготавливать частицы в узком интервале распределения и крупных размеров, так чтобы это облегчало исключение примесей (известь, бор, кальций, железо) из конечного продукта.

Различия найдены путем определения характеристик нанометрического продукта. Размер частиц кристаллов может быть измерен. Измерения кристаллов могут быть сделаны при взятии за основу ширины и профиля точек дифрактограммы и оценке указанных параметров Rietveld-методом или с помощью (трансмиссионного или сканирующего) электронного микроскопа и измерении кристаллов, которые находятся в наблюдаемой области. Измерение размера частиц может быть сделано с рассеянием света, рассеянием фотонов, затуханием акустических волн и измерением скорости седиментации. Другая методика определения характеристик частиц представляет собой измерение площади поверхности и учет морфологии кристаллов, чтобы сделать оценку размера, который необходимо иметь для получения такой площади поверхности.

Измерение размера частицы отличается от измерения размера кристалла тем, что первое отражает распределение действительного размера, который материал имеет в данном состоянии.

В данном случае авторы используют рассеяние лазерного луча (рассеяние света) в продукте, полученном способом настоящего изобретения.

В патенте № CN 1332116 для получения наночастиц гидроксида магния способ должен осуществляться при температуре в интервале 100-200°С при времени реакции в интервале 2-12 ч.

В патенте № CN 341694 реакция имеет место во вращающемся слое. Необходимо, чтобы температура созревания была в интервале 80-100°С.

В патенте № CN 1359853 не приводятся подробности относительно пути, по которому протекает реакция, используемыми поверхностно-активными добавками являются калиевая соль и ОР-10; получаемый продукт требует растирания в порошок для получения дисперсии, кроме того, представленным размером является размер кристалла, измеренный методом рентгено-структурного анализа (РСА) (DRX по акрониму в испанском языке).

В патенте № CN 1361062 используемый реактор представляет собой предварительно смешанную жидкую мембрану.

В патенте № CN 1389521 реакция имеет место только в одной фазе в реакторе с высокой скоростью перемешивания, затем следует обработка в течение 5 ч ультразвуком, затем образовавшийся желатин сушат и перерабатывают на стадии измельчения.

ЦЕЛЬ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ

В свете проблем, имеющихся в прототипе, целью настоящего изобретения является создание нового способа получения наночастиц гидроксида магния.

Дополнительной целью настоящего изобретения является создание способа получения наночастиц гидроксида магния в высоких концентрациях.

Другой целью настоящего изобретения является способ, который дает возможность получать монодисперсные частицы гидроксида магния.

Еще одной целью настоящего изобретения является то, чтобы наночастицы гидроксида магния, которые получаются способом настоящего изобретения, имели диаметры в интервале 90-110 нм.

Другой целью настоящего изобретения является то, чтобы наночастицы гидроксида магния, получаемые способом настоящего изобретения, обладали стабильностью в течение свыше чем 12 мес без перемешивания в течение периода хранения.

Еще одной целью настоящего изобретения является создание способа получения наночастиц гидроксида магния, действующего в периодическом режиме.

Другой целью настоящего изобретения является создание способа получения наночастиц гидроксида магния, действующего в непрерывном режиме.

Еще одной целью настоящего изобретения является то, чтобы способ получения наночастиц гидроксида магния давал возможность регулировать размер частицы.

Другой целью настоящего изобретения является то, чтобы продукт имел способность диспергироваться в различных веществах.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Для лучшего понимания материала изобретения описание сопровождается рядом чертежей, которые представляют собой иллюстрации, но не ограничение его осуществления. Они описаны далее.

На фиг.1 представлена принципиальная схема способа получения наночастиц гидроксида магния по изобретению.

На фиг.2 представлен график распределения частиц по размеру гидроксида магния, полученного способом по изобретению.

На фиг.3 представлен график распределения частиц гидроксида магния по размеру, полученного способом по изобретению.

На фиг.4 представлена микрофотография нанометрического и монодисперсного гидроксида магния с размерами частиц в интервале 20-50 нм, полученных по методике, описанной настоящим изобретением.

На фиг.5 представлена дифрактограмма гидроксида магния, полученного посредством настоящего изобретения.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к способу получения нанометрических частиц гидроксида магния, которые имеют диаметр в интервале 20-160 нм со средним диаметром 100 нм. Частицы имеют характеристики монодисперсных частиц и стабильность более 12 мес и находятся в широком интервале концентраций.

Способ настоящего изобретения осуществляется, начиная с регулируемых количеств солей магния, таких как хлориды, сульфаты, ацетаты, оксиды, карбонат магния и другие, а также их комбинации, затем следует регулировать рН контролируемым введением щелочей, таких как карбонат натрия, карбонат калия, гидроксид натрия, гидроксид калия, аммоний и растворы аммиака, что вызывает осаждение гидроксида магния.

Способ имеет место в 3 стадии: реакция, реализованная в 2 ступени, стадия выделения и стадия очистки. Первая ступень первой стадии реакции характеризуется микросмешанной реакционной зоной, где регулируется размер частиц, и с интегрированием добавок обеспечивает монодисперсию частиц; вторая ступень реакции представляет собой стабилизацию суспензии. На второй стадии выделение частиц создается с помощью химико-механического способа. Последняя стадия предназначена для очистки и концентрирования материала, а также получения его в требуемом состоянии, придающем ему стабильные и дисперсные свойства.

Частицы являются способными повторно диспергироваться в различных средах, таких как вода, спирты, альдегидные смолы, фенольные смолы, полиуретан, виниловые смолы, акриловые смолы и широкий ряд органических материалов, таких как полиэтилен высокой и низкой плотности, полипропилен, полиамид, АБС и/или любая их комбинация.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Последующее представляет собой методику изобретения, которая иллюстрируется на фиг.1, на которой операции и потоки описываются, как указано цифрами в скобках.

Стадия 1. Реакция (600)

Получение водного раствора соли магния (100)

Водный раствор соли магния может содержать от 0,01 до 10 мас.% растворенного магния, который получают из источника магния (10), выбранного из группы, состоящей из хлоридов, сульфатов, ацетатов, оксидов, карбоната магния и других, а также их смесей. Вводится поверхностно-активное вещество (30), которое выбрано из группы, которая включает в себя этоксилаты (например, нонилфенол), алкилфенолэтоксилат и натрийлауретсульфат в количестве от 0,01 до 10 мас.% и предпочтительно 3 мас.% по отношению к массе осажденного гидроксида магния. Также в указанном водном растворе десольватирует органическая кислота, выбранная из группы, которая включает в себя янтарную, аскорбиновую, щавелевую, адипиновую, винную, лимонную, дигликолевую, салициловую и глутаровую кислоты, а также другие типы кислот в количестве от 0,01 до 10 мас.% и предпочтительно 2 мас.% по отношению к массе осажденного гидроксида магния.

Получение водного щелочного раствора (200)

Водный щелочной раствор в концентрации до 50 мас.% щелочи (40) выбирается из группы, которая включает в себя карбонаты натрия и калия, аммиак, гидроксиды натрия, калия, кальция, аммиачные растворы и другие щелочи, которые позволяют увеличить рН реакционной смеси до значений выше 8,5. В указанный водный раствор вводят диспергатор (50), выбранный из веществ типа полиакрилатных кислот или их солей, такой как GBC-110, Disperbyk 190, 185 & 156 (Byk Chemie), Busperse 39 (Beckman), среди других, от 0,01 до 10 мас.% по отношению к массе осажденного гидроксида магния.

Получение водного и разбавленного раствора реакционной смеси

Водный разбавленный раствор содержит воду (60) и диспергатор (70), выбранный из веществ типа полиакрилатных кислот или их солей, в количестве до 10 мас.% по отношению к массе осажденного гидроксида магния.

Реакция получения нанометрического гидроксида магния (600)

Реакция (600) может проводиться периодически, а также непрерывно в зависимости от уровня получения, который требуется, но во всех случаях она проводится в две ступени.

На фиг.2, 3, 4 и 5 представлены результаты прогонов по получению нанометрического гидроксида магния, выполненных на (полупромышленной) пилотной установке с производительностью 1,0 т/день (24 ч).

В зоне микросмешивания (400) растворы соли магния (100) и щелочи (200) объединяются. Пропорции между солью магния (100) и щелочью (200) могут быть составлены в количествах, соответствующих правилам стехиометрии, или с избытком, составляющим от 20 до 50%, любого одного из двух реагентов - соли магния и щелочи, предпочтительно с 30%-ным избытком щелочи.

Важно, что было установлено, что в отсутствие добавок и стехиометрических количеств реакция дает гидроксид магния с кристаллами и крупными частицами и низкой площадью поверхности; избыток любого из реагентов дает Mg(ОН)2 в форме небольших кристаллов с крупными частицами и большой площадью поверхности приблизительно 60 м2/г или более. При использовании добавок, которые соответствуют изобретению, и особенно при избытке 30% щелочи получаются небольшие кристаллы и небольшие частицы и получается площадь поверхности приблизительно 60 м2/г.

Время пребывания в микросмесителе может составлять до 3 мин и предпочтительно составляет менее 1 мин. Условия в зоне микросмешивания представляют собой турбулентный поток с числом Рейнольдса NRe 3000 или более. Рабочие температуры в зоне микросмешения находятся в интервале 5-45°С.

В зону стабилизации (500) суспензии, которая может быть обеспечена внутренними составными частями реактора, а также наружным оборудованием, вводится водный разбавленный раствор (300), обеспечивающий, что условия смешения являются гомогенными, так что преобладает интервал прокачивания насосом, по меньшей мере, 2 и максимум 6, т.е. массовая скорость жидкости должна составлять, по меньшей мере, 10 фут/мин (3 м/мин) до 40 фут/мин (12 м/мин); время пребывания порядка 5-30 мин и предпочтительно от 5 мин и до менее 10 мин, хотя перемешивание может поддерживаться в течение до 3 ч.

Важно, что в процессе реакции (600) поддерживается рН 8,5 или выше.

Стадия 2. Созревание нанометрического гидроксида магния (700)

Процесс созревания заключает в себе механическое и химическое кондиционирование с применением ультразвука с помощью любого традиционного доступного средства, использующего частоту в интервале 20-45 кГц, таким образом, что действие, объединенное с механической работой и диспергаторами и органическими кислотами, позволяет дезактивировать активные точки, хотя они еще присутствуют в частицах и кристаллах образованного гидроксида. Период созревания имеет время созревания менее или равно 3 ч и предпочтительно 15-60 мин. Температура на данной стадии регулируется в интервале 60-80°С.

Стадия 3. Промывка нанометрического гидроксида магния (800)

Стадия промывки (800) служит для очистки гидроксида магния, полученного на стадиях реакции (600) и созревания (700), и содержит столько циклов, сколько требуется для достижения установленной чистоты, концентрирование продукта до получения пасты, которая содержит до 35% твердого вещества, и в специальных условиях оно может достигать 60%, причем продукт представляет собой повторно диспергируемый гидроксид магния с размером частиц 90-110 нм.

Продукт, полученный указанным способом, представляет собой гидроксид магния с распределением частиц по размеру, как показано на фиг.2 и 3, где на фиг.2 представлен график распределения частиц по размеру гидроксида магния, полученного способом настоящего изобретения на (полупромышленной) пилотной установке с производительностью 1,0 т/день (24 ч) нанометрического гидроксида магния, где показано следующее распределение частиц по размеру: D10, 59,0 нм; D50, 92,7 нм; D90, 153 нм, измеренных с помощью дифракции лазерных лучей на оборудовании, поставляемом под торговой маркой "Coulter LS230", показывающее размер кристалла 23 нм, с измерением ширины как базы и профиля точек дифрактограммы, полученной на дифрактометре рентгеновских лучей торговой марки "Bruker D8 Advance", и оценкой указанных параметров Rietveld-методом.

На фиг.3 графически представлено распределение частиц по размеру гидроксида магния, полученного способом данного изобретения на (полупромышленной) пилотной установке с производительностью 1,0 т/день (24 ч) нанометрического гидроксида магния, где показано следующее распределение частиц по размеру: D10, 81,2 нм; D50, 109 нм; D90, 142 нм. Все они были измерены с помощью дифракции лазерных лучей с использованием оборудования "Coulter LS230", с размером кристалла 24 нм, с измерением при использовании в качестве базы ширины и профиля пиков дифрактограммы, полученной с использованием дифрактометра рентгеновских лучей "Bruker D8 Advance", и оценкой указанных параметров Rietveld-методом.

На фиг.4 представлена микрофотография нанометрического монодисперсного гидроксида магния с размерами в интервале от 20 до 50 нм, измеренными с использованием трансмиссионного электронного микроскопа, причем образец был получен с использованием методики, описанной в настоящем изобретении, на (полупромышленной) пилотной установке с производительностью 1,0 т/день (24 ч) нанометрического гидроксида магния.

На фиг.5 представлена микрофотография нанометрического монодисперсного гидроксида магния, полученная с использованием дифрактометра рентгеновских лучей "Bruker D8 Advance" no методике, описанной в настоящем изобретении. Размер кристалла расчитывают по методу Ритвелда (Rietveld), принимая за базу ширину и профиль пиков дифрактограммы.

Приведенное выше описание способа данного изобретения отражает необходимые стадии для обеспечения того, чтобы получаемый продукт приобрел характеристики гомогенности, стабильности, монодисперсности и другие характеристики наночастиц гидроксида магния, которые уже описаны, и, кроме того, включает предпочтительные варианты рабочих условий и другие параметры; однако указанное описание и прилагаемые чертежи рассматриваются как представление способа и продукта в более широких рамках, чем сами примеры. Для специалиста в данной области техники будет очевидно, что новые вариации могут быть введены при осуществлении данного изобретения с использованием различного оборудования и исходных материалов, обычно доступных, но такие вариации не могут считаться отступлением от объема данного изобретения, который определяется последующей формулой изобретения.

1. Способ получения нанометрического монодисперсного и стабильного Mg(OH)2, состоящий из следующих стадий:
a. смешение водного раствора соли магния и водного раствора щелочи,
b. стабилизация смешанного продукта введением разбавителя,
c. созревание стабилизированного продукта,
d. очистка созревшего продукта с получением частиц гидроксида магния,
причем данный способ отличается тем, что
i) получение наночастиц монодисперсного Mg(OH)2 имеет место в процессе стадий смешения и стабилизации, где смесь микросмешивается,
ii) водный раствор соли магния содержит от 0,01 до 10 мас.% растворенного магния, поверхностно-активное вещество, представляющее собой этоксилат, и органическую кислоту,
iii) водный щелочной раствор содержит щелочь, выбранную из группы, которая включает в себя гидроксид натрия, гидроксид калия и растворы аммиака, и диспергатор, выбранный из веществ типа полиакрилатных кислот или их солей,
iv) разбавитель, который используется для стабилизации продукта смеси, содержит воду и тот же диспергатор, что и используемый в щелочном растворе, причем вышеуказанный разбавитель вводится при постоянном встряхивании в процессе стабилизации,
v) в процессе стадии созревания уже стабилизированная смесь продукта подвергается механической и химической обработке при применении ультразвука, который предпочтительно находится в интервале от 20 до 45 кГц, с дезактивацией активных точек полученных частиц и кристаллов.

2. Способ получения нанометрического монодисперсного и стабильного Mg(OH)2 по п.1, отличающийся тем, что органическая кислота, используемая в растворе соли магния, выбрана из группы, которая включает в себя янтарную, аскорбиновую, щавелевую, адипиновую, винную, лимонную, дигликолевую, салициловую и глутаровую кислоты.

3. Способ получения нанометрического монодисперсного и стабильного Mg(OH)2 по п.1, отличающийся тем, что диспергатор в водном щелочном растворе находится в пропорции, которая составляет от 0,01 до 10 мас.% по отношению к массе осаждаемого гидроксида магния.

4. Способ получения нанометрического монодисперсного и стабильного Mg(OH)2 по п.1, отличающийся тем, что разбавитель содержит до 10 мас.% диспергатора по отношению к массе осажденного гидроксида магния.

5. Способ получения нанометрического монодисперсного и стабильного Mg(OH)2 по п.1, отличающийся тем, что соли магния и щелочной раствор смешиваются при интенсивном перемешивании в турбулентном потоке с числом Рейнольдса NRe, равном или превышающем 3000, что обеспечивает микросмешение.

6. Способ получения нанометрического монодисперсного и стабильного Mg(OH)2 по п.1, отличающийся тем, что соотношение между солью магния и щелочью в смеси находится в интервале от стехиометрического уровня до 50%-ного избытка соли магния или щелочи и предпочтительно до 30%-ного избытка щелочи.

7. Способ получения нанометрического монодисперсного и стабильного Mg(OH)2 по п.1, отличающийся тем, что время пребывания в микросмесителе составляет до 3 мин, предпочтительно менее 1 мин.

8. Способ получения нанометрического монодисперсного и стабильного Mg(OH)2 по п.1, отличающийся тем, что время стабилизации находится в интервале от 5 до 30 мин, предпочтительно в интервале 5-10 мин.

9. Способ получения нанометрического монодисперсного и стабильного Mg(OH)2 по п.1, отличающийся тем, что время пребывания в процессе стадии созревания находится в интервале от 15 до 60 мин и предпочтительно составляет около 15 мин.

10. Способ получения нанометрического монодисперсного и стабильного Mg(OH)2 по п.1, отличающийся тем, что в процессе стадии созревания для того, чтобы достигнуть созревания продукта, необходимо поддерживать температуру в интервале 60-80°С.

11. Способ получения нанометрического монодисперсного и стабильного Mg(OH)2 по п.1, отличающийся тем, что способ осуществляется в периодическом режиме.

12. Способ получения нанометрического монодисперсного и стабильного Mg(OH)2 по п.1, отличающийся тем, что способ осуществляется в непрерывном режиме.

13. Паста гидроксида магния, полученная способом по п.1, отличающаяся тем, что частицы гидроксида магния в пасте являются нанометрическими монодисперсными и стабильными в концентрациях вплоть до 35 мас.%.

14. Паста гидроксида магния по п.13, отличающаяся тем, что средний размер частиц (D50) гидроксида магния находится в интервале от 92,7 до 109 нм, и, по меньшей мере, 90% частиц имеют размер (D10) более 59 нм, и, по меньшей мере, 90% частиц имеют размер (D90) менее 153 нм.

15. Паста гидроксида магния, полученная способом по п.1, отличающаяся тем, что указанная паста является стабильной в течение периодов времени более 12 месяцев без необходимости механической обработки.



 

Похожие патенты:

Изобретение относится к химической промышленности, а именно к способам получения оксида магния. .

Изобретение относится к способу получения сложного гидроксида в виде однородного твердого раствора, к полученному этим способом сложному гидроксиду металлов и к пламезамедляющей высокомолекулярной композиции, обладающей превосходными пламезамедляющей способностью и механической прочностью.

Изобретение относится к технологии неорганических веществ и может быть использозэно для получения гидроксида магния. .

Изобретение относится к технологии соединений магния, в частности к способам получения гидроксида магния Цель изобретения - повысить скорость фильтрации осадка гидроксида магния.

Изобретение относится к переработке природных рассолов и может быть использовано при получении гидроксида магния из хлоридно-натриевых рассолов, содержащих примеси бора.

Изобретение относится к способам выделения гидроксида магния из водных растворов (главным образом природных рассолов), содержащих соли магния, и может найти применение в химической промышленности как при очистке рассолов для производства кальцинированной соды и электролиза, так и в, производстве гидроксида магния из морской воды известковым методом.
Изобретение относится к сельскому хозяйству, а именно к пчеловодству в части борьбы с болезнями пчел и их профилактики. .

Изобретение относится к электронным приборам, в частности к полупроводниковым приборам, и может быть использовано для выпрямления переменного тока в радиоаппаратуре, радиоизмерительных приборах и системах.

Изобретение относится к ядерной энергетике и касается технологии получения оксидов урана для изготовления ядерного топлива для атомных станций. .

Изобретение относится к области металлоксидных тонкопленочных технологий, к способу получения наноструктурированных пленочных электродных материалов. .

Изобретение относится к высокотемпературным сверхпроводящим проводам. .

Изобретение относится к технологическим процессам производства компонентов микроэлектроники и вычислительных схем. .

Изобретение относится к области приборостроения. .

Изобретение относится к квантовой электронике, к технологии создания сверхрешеток из нанокристаллов. .

Изобретение относится к области производства композиционных материалов, в частности к связующим и препрегам на их основе, и может быть использовано при изготовлении высокопрочных конструкционных материалов в ракетной и космической технике, авиации, судостроении, машиностроении, электротехнике, радиоэлектронике, приборостроении
Наверх