Биореактор вытеснения с мембранным устройством подвода и стерилизации газового питания

Изобретение относится к биореакторам асептического выращивания микроорганизмов, в частности к инокуляторам, посевным аппаратам, и может найти применение в микробиологической, пищевой, медицинской промышленности, а также в сфере образования и науки. Биореактор вытеснения с мембранным устройством подвода и стерилизации газового питания содержит цилиндрический корпус с рубашкой теплообмена, крышку, днище, газораспределительное устройство и газопроницаемые полимерные трубчатые мембраны, установленные вдоль оси корпуса. Внутри корпуса вдоль центральной его оси установлена несущая труба подвода газа, соединенная с газораспределительным устройством, на которой с равным шагом установлены перфорированные диски, через часть отверстий которых проходят газопроницаемые полимерные трубчатые мембраны, закрепленные между крышкой и газораспределительным устройством. Такая конструкция биореактора позволяет повысить рабочее давление газа в газопроницаемых полимерных трубчатых мембранах и, вследствие этого, увеличить массоперенос кислорода в нем. 2 ил.

 

Изобретение относится к биореакторам асептического выращивания микроорганизмов, в частности к инокуляторам, посевным аппаратам, и может найти применение в микробиологической, пищевой, медицинской промышленности, а также в сфере образования и науки.

Известен аппарат для культивирования клеток и тканей, содержащий закрытую емкость, мешалку и устройство для подвода газа в питательную среду, представляющее собой змеевик, выполненный из проницаемого для газа полимерного материала. Змеевик расположен внутри дополнительной циркуляционной обечайки (А.с. 786326 (СССР) Аппарат для культивирования клеток и тканей /Байбаков В.И., Власкин Б.А. // Бюл. №81986).

Недостатками такого аппарата являются использование механического перемешивающего устройства, герметизация вала которого сложна, а само наличие мешалки и разделение емкости аппарата на две части ограничивает объем, занимаемый трубчатым устройством газового питания. Все вышеперечисленное ведет к ограничению рабочей поверхности ввода газа и снижает предельные массообменные характеристики и производительность аппарата.

Известен биореактор для выращивания микроорганизмов, содержащий цилиндрический корпус, мешалку и несущие элементы, на которые крепится полимерная газопроницаемая трубчатая мембрана для подвода газа (см. http://www.fermenter.ru/content/page_25_0.html, Компактный настольный ферментер BIOSTAT В с устройством для беспузырьковой аэрации).

Недостатками такого аппарата являются использование сложного механического перемешивающего устройства и неполное использование пространства для развития рабочей поверхности полимерной газопроницаемой трубчатой мембраны.

Наиболее близким к изобретению по технической сущности и достигаемому эффекту является биореактор колонного типа с осевым расположением газопроницаемых полимерных трубчатых мембран, закрепленных между днищем, имеющим газораспределительную полость, и подвижным газосборным устройством. Биореактор не имеет механических перемешивающих устройств, за счет чего весь объем равномерно заполнен газопроницаемыми полимерными трубчатыми мембранами, отстоящими друг от друга на расстояния 3-4 мм. Общая удельная поверхность мембран при этом достигает 155 м23 (Научно-технический отчет ООО «Биотехпродукция» по теме «Аппаратурное оснащение и совершенствование аэробных технологий получения посевных материалов», Емельянов В.М., Мухачев С.Г., Ситнов В.В. и др. УДК 663.131, № гос. регистрации 01200610996, Казань 2007).

К недостаткам такого биореактора относятся крепление газопроницаемых полимерных трубчатых мембран на днище, а газосборного устройства на крышке, что усложняет конструкцию и затрудняет сборку биореактора. Кроме того, отсутствуют дополнительные промежуточные крепления трубчатых мембран, что не позволяет поднять рабочее давление газа выше 0,25 МПа из-за их деформации и ограничивает предельную скорость массообмена кислорода на уровне 1,1-1,3 кг/м3·ч (деформация трубчатых мембран влечет частичное их соприкосновение и взаимное экранирование поверхностей массообмена).

Изобретение решает задачи, заключающиеся в создании более простого по конструкции и эксплуатации биореактора с мембранным устройством подвода и стерилизации газового питания. Предлагаемая конструкция биореактора позволяет повысить рабочее давление газа в газопроницаемых полимерных трубчатых мембранах и вследствие этого увеличить массоперенос кислорода в нем.

Технический результат в биореакторе вытеснения с мембранным устройством подвода и стерилизации газового питания, включающем цилиндрический корпус с рубашкой теплообмена, крышку, днище, газораспределительное устройство, газопроницаемые полимерные трубчатые мембраны, установленные вдоль оси корпуса, достигается тем, что внутри корпуса вдоль центральной его оси установлена несущая труба подвода газа, соединенная с газораспределительным устройством, на которой с равным шагом установлены перфорированные диски, через часть отверстий которых проходят газопроницаемые полимерные трубчатые мембраны, закрепленные между крышкой и газораспределительным устройством.

Предлагаемое изобретение позволяет увеличить продуктивность биореактора по биомассе микроорганизмов в 1,5-2 раза, упростить конструкцию и эксплуатацию биореактора.

На фиг.1 схематично показан предложенный биореактор в продольном разрезе; на фиг.2 показан поперечный разрез биореактора.

Биореактор содержит цилиндрический корпус 1 с днищем 2 и рубашкой теплообмена 3, съемную крышку 4, на которой смонтированы газопроницаемые полимерные трубчатые мембраны 5, установленные вдоль оси корпуса 1, газораспределительное устройство 6. Корпус 1, днище 2, крышка 4 биореактора могут быть выполнены, например, из нержавеющей стали.

Съемная крышка 4 имеет полость для приема непотребленного газа 7 и штуцер 8, служащий для его отвода, а также для отвода воздуха при первоначальной продувке газовой полости внутри мембран 5 газом заданного рабочего состава, например техническим кислородом. На крышке имеется засевной штуцер 9, штуцер 10 для подачи газового питания, штуцер 11 для отвода углекислого газа. На днище 2 расположен штуцер 12, через который отбирается культуральная жидкость и внешним рециркуляционным насосом подается в биореактор через штуцер 13, расположенный на крышке 4. Вдоль центральной оси корпуса 1 установлена несущая труба подвода газа 14, соединенная с газораспределительным устройством 6. На несущей трубе 14 с равным шагом, например, 2-3 диаметра полимерной трубчатой мембраны, установлены перфорированные диски 15, выполненные, например, из фторопласта, через часть отверстий которых, например через 70% отверстий, проходят газопроницаемые полимерные трубчатые мембраны 5, например, выполненные из силикона, закрепленные между крышкой 4 и газораспределительным устройством 6. Толщина дисков 15, например, равная 1,5-2,5 мм, и обработка кромок отверстий, через которые пропущены трубчатые мембраны 5, выбираются из условия недопущения перерезания трубок на кромках при подаче в них газа под давлением. Отверстия в перфорированных дисках 15 для облегчения монтажа биореактора могут, например, на 0,1-0,2 мм превышать диаметр трубчатых мембран. Отбор проб осуществляется через штуцер 15. Датчики (pH, pO2, eH и др.) могут устанавливаться при необходимости в ячейку внешнего рециркуляционного контура.

Рассмотрим предлагаемый биореактор в работе. В корпус 1 биореактора заливается питательная среда и через засевной штуцер 9 вводится культура микроорганизмов. В культуральную жидкость через газопроницаемые полимерные трубчатые мембраны 5 из несущей трубы 14, соединенной с входным штуцером 10, подается газовое питание. Через штуцер 8 осуществляется сброс воздуха из полости трубчатых мембран 5 при кратковременной продувке их рабочим газом.

В зависимости от потребности культуры микроорганизмов, по мере роста концентрации клеток, давление подаваемого газа увеличивают. Интенсивность процесса определяют по скорости продуцирования углекислого газа, отбираемого из отводящего штуцера 11. С целью создания потока внутри биореактора культуральная жидкость, отбираемая через штуцер 12, возвращается в корпус биореактора через штуцер 13. Интенсификация перемешивания жидкости достигается тем, что поток на своем пути проходит через свободные отверстия перфорации, расположенные на перфорированных дисках 15.

Поскольку интенсивность массообмена кислорода в мембранных устройствах любой конструкции пропорциональна произведению величины удельной поверхности мембран на перепад давления, то предлагаемая конструкция биореактора, позволяющая увеличить давление внутри мембран примерно в 2 раза при снижении удельной поверхности мембран не более чем на 20% (часть поверхности трубчатых мембран 5 проходит через ограничивающие деформацию диски 15) обеспечивает рост массообмена не менее чем в 1,6 раза.

Предлагаемое изобретение позволяет поднять рабочее давление внутри полимерных трубчатых мембран 5. При повышении давления поверхность трубчатых мембран 5 деформируется, но, встречая сопротивление со стороны перфорированных дисков 15, эта деформация носит ограниченный характер вследствие того, что диски расположены с шагом, равным, например, 2-3 диаметрам полимерных трубчатых мембран.

Использование изобретения позволяет повысить производительность биореактора, упростить его изготовление и эксплуатацию, уменьшить стоимость расходных материалов (например, отказаться от применения армированных мембран).

Изобретение может быть использовано для комплектации надежных и недорогих установок учебного, исследовательского и промышленного назначения.

Биореактор вытеснения с мембранным устройством подвода и стерилизации газового питания, содержащий цилиндрический корпус с рубашкой теплообмена, крышку, днище, газораспределительное устройство, газопроницаемые полимерные трубчатые мембраны, установленные вдоль оси корпуса, отличающийся тем, что внутри корпуса вдоль центральной его оси установлена несущая труба подвода газа, соединенная с газораспределительным устройством, на которой с равным шагом установлены перфорированные диски, через часть отверстий которых проходят газопроницаемые полимерные трубчатые мембраны, закрепленные между крышкой и газораспределительным устройством.



 

Похожие патенты:

Изобретение относится к системе ферментера для применения в биотехнических процессах, в частности для культивирования клеток. .

Изобретение относится к эрлифтному петлевому биореактору для получения биодизельного топлива без использования внешних газов. .

Изобретение относится к области экологической биотехнологии и может быть использовано для наработки в полевых условиях биомассы микроорганизмов - деструкторов нефтяных загрязнений.

Изобретение относится к пленочным аппаратам для культивирования автотрофных микроскопических организмов и может быть использовано в микробиологической и других отраслях промышленности, предусматривающих применение продукции культивирования (например, в комбикормовой промышленности при альголизации комбикормов, в фармацевтической и косметической промышленности).

Изобретение относится к устройствам для культивирования клеток тканей и микроорганизмов в условиях отсутствия силы земной гравитации и может быть использовано в космической биотехнологии.

Изобретение относится к устройствам для проведения биотехнологических процессов, в частности для культивирования клеток тканей и микроорганизмов в условиях микрогравитации, и может быть использовано в космической биотехнологии.

Изобретение относится к области микробиологии. .

Изобретение относится к приспособлениям, предназначенным для насыщения жидкой среды газом, например воздухом, и может найти применение в различных отраслях промышленности, включая пищевую, химическую и микробиологическую.

Изобретение относится к аппаратам для проведения биохимических процессов и может быть использовано в различных отраслях промышленности. .

Изобретение относится к биотехнологии, а именно к аппаратам для ферментативной переработки отходов растительного и животного происхождения, стеблей растений, навоза животных и птицы, сточных вод для получения биогаза и органического экологически чистого удобрения

Изобретение относится к микробиологической, пищевой, медицинской промышленности, в частности к биореакторам асептического выращивания микроорганизмов, и может быть использовано для комплектации установок учебного, научно-исследовательского и промышленного назначения

Изобретение относится к устройствам для выращивания одноклеточных микроорганизмов, например зеленых водорослей, в закрытых емкостях в водной суспензии при естественном или искусственном освещении

Изобретение относится к анаэробной переработке отходов сельского хозяйства, а также активного ила промышленных и коммунальных очистных сооружений с получением биогаза и органического удобрения

Изобретение относится к микробиологической, дрожжевой, спиртовой промышленности, а также к сельскому хозяйству и предназначено для переработки жидких органических отходов, преимущественно навоза или помета, и получения экологически чистых органических удобрений и горючего биогаза

Изобретение относится к области биотехнологии, фармацевтической промышленности, в частности к оборудованию для культивиротвания фотосинтезирующих микроорганизмов, преимущественно микроводорослей. Фотобиореактор содержит рабочую емкость (2) с первой и второй наружными боковыми поверхностями (20, 20'). Емкость (2) сформирована из эластичного прозрачного материала, непроницаемого для текучей среды, и установлена в каркасе (3). Каркас (3) имеет удлиненные и, по существу, вертикальные опорные компоненты (32). Компоненты (32) расположены, по меньшей мере, в одном горизонтальном ряду. Причем они установлены поочередно прилегающими к первой и второй наружным боковым поверхностям (20, 20') рабочей емкости (2) с возможностью их поддержки. Изобретение обеспечивает повышение производительности и качества процесса культивирования микроводорослей при одновременном сокращении затрат. 14 з.п. ф-лы, 5 ил.

Группа изобретений относится к биотехнологии. Предложен способ выращивания колоний микробных клеток на поверхности пористой пластины. Способ включает подачу питательного раствора снизу вверх через пористую пластину в зоны роста колоний микробных клеток на её верхней поверхности, подачу суспензии микробных клеток на верхнюю поверхность пористой пластины, создание контролируемых условий роста колоний, проведение наблюдения за ростом колоний, отсоединение выращенных колоний микробных клеток от зон роста и перенос их во внешние средства идентификации. Питательный раствор подают в зоны роста колоний микробных клеток путем создания перепада давления между входом и выходом отверстий. Отверстия выполнены в пластине из анодного оксида алюминия ортогонально ее большой плоскости и топологически кодированы. В них сформированы указанные зоны роста в виде пористых мембран. Пористые мембраны размещены вровень с верхней поверхностью пластины, либо с образованием лунки и не пропускают микробные клетки. После подачи питательного раствора подают суспензию микробных клеток заданной концентрации на верхнюю поверхность пластины до их равномерного распределения. На поверхности пластины между зонами роста сформирована пленка, которая препятствует прикреплению микробных клеток. Отсоединение выросших микроколоний от зон роста осуществляют путем гидроудара. Гидроудар направлен со стороны входа цилиндрических отверстий пластины и распространяется вдоль них и далее через поры пористых мембран с силой, не разрушающей микроколонии, но достаточной для их отрыва от зон роста. Также предложено устройство для выращивания колоний микробных клеток вышеуказанным способом. Техническим результатом является обеспечение условий автоматизации процессов подачи питательного раствора и процессов отделения, и переноса выросших колоний, возможность интегрирования в миниатюрные переносные приборы, и использование в лабораториях на чипе и обеспечения портативности устройства. 2 н. и 4 з.п. ф-лы, 14 ил., 4 табл., 2 пр.

Группа изобретений относится к биотехнологии. Предложен способ получения целлюлозосодержащего продукта с помощью вырабатывающих целлюлозу бактерий. Способ включает подготовку мембраны, пропускающей питательный раствор и не пропускающей бактерии. Также подготавливают питательный раствор на первой стороне мембраны для подачи через мембрану на вторую сторону. Далее подготавливают газовую среду на второй стороне мембраны, подготавливают бактерии, вырабатывающие целлюлозу, на второй стороне мембраны для получения бактериями питательного раствора, проникающего сквозь мембрану. Также предложен целлюлозосодержащий продукт, полученный указанным способом. Техническим результатом является отсутствие образования гранул в питательном растворе и отсутствие отложений целлюлозы в подводящих и отводящих каналах, а также получение целлюлозосодержащего продукта, обладающего однородной структурой и плотностью. 2 н. и 31 з.п. ф-лы, 10 ил.

Группа изобретений относится к биохимии. Предложено устройство для поверхностного выращивания микроорганизма на жидкой питательной среде. Устройство включает кювету с поддоном для выращивания микроорганизма, снабженную свободно опущенной на ее дно транспортной сеткой. Транспортная сетка выполнена из нейтрального материала и закреплена своими концами на приводных барабанах, обеспечивающих поднятие транспортной сетки со дна кюветы. Также устройство содержит приемное устройство с клапаном для присоединения к смесителю-дозатору и подачи смеси жидкой питательной среды с маточной культурой в кювету, поворотные заслонки, установленные по торцам кюветы для регулирования обмена воздуха в кювете, сливное устройство для слива культуральной жидкости. патрубок для подачи сушильного агента под сетку, пробоотборник и сменные светофильтры в фонарях для регулирования освещенности, расположенные на боковых стенках кюветы, крышку, герметично закрывающую кювету, выполненную с возможностью ее открывания и/или снятия, снабженную форсунками для распыления раствора ПАВ над поверхностью выращиваемой в кювете биомассы и моющими головками для осуществления санитарной обработки устройства. Также предложен способ поверхностного выращивания микроорганизма на жидкой питательной среде с использованием вышеуказанного устройства. Предложенные изобретения обеспечивают выращивание микроорганизмов на жидкой питательной среде с минимальным применением ручного труда. 2 н. и 5 з.п. ф-лы, 1 ил., 2 пр.
Наверх