Деформируемый термически неупрочняемый сплав на основе алюминия


 


Владельцы патента RU 2416657:

Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") (RU)

Предлагаемое изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала преимущественно для паяных узлов космической техники, получаемых методами высокотемпературной пайки. Предложен деформируемый термически неупрочняемый сплав на основе алюминия, содержащий, мас.%: марганец 0,9-1,4, магний 0,5-0,7, скандий 0,17-0,35, цирконий 0,05-0,12, титан 0,01-0,05, железо 0,4-0,6, церий 0,0001-0,0009, алюминий остальное. Сплав характеризуется повышенной прочностью после высокотемпературной пайки, что позволит снизить массу и габариты паяного узла летательного аппарата. 1 табл.

 

Предлагаемое изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала преимущественно для паяных узлов космической техники, получаемых методами высокотемпературной пайки.

Известен деформируемый термически неупрочняемый сплав на основе алюминия АД1, применяемый для паяных узлов, получаемых методами высокотемпературной пайки, содержащий не менее 99,3% алюминия (см. Справочник по алюминиевым сплавам под. ред. В.И.Елагина - ВИЛС, 1978, с.54).

Однако существующий сплав имеет низкие прочностные свойства до и после пайки.

Известен деформируемый термически неупрочняемый сплав на основе алюминия, широко применяемый для паяных узлов, получаемых методами высокотемпературной пайки, следующего химического состава, мас.%:

Марганец 1,0-1,6
Алюминий Остальное

(см. Промышленные алюминиевые сплавы. Справ. изд. / Алиева С.Г., Альтман М.Б., Амбарцумян С.М. и др. 2-е изд., перераб. и доп. - М.: Металлургия, 1984, с.29), прототип.

Недостатком известного сплава является низкая прочность после пайки.

Предлагается деформируемый термически неупрочняемый сплав на основе алюминия, содержащий марганец, магний, скандий, цирконий, титан, железо и церий при следующем соотношении компонентов, мас.%:

Марганец 0,9-1,4
Магний 0,5-0,7
Скандий 0,17-0,35
Цирконий 0,05 -0,12
Титан 0,01-0,05
Железо 0,4-0,6
Церий 0,0001-0,0009
Алюминий Остальное.

Предлагаемый сплав отличается от известного тем, что он дополнительно содержит магний, скандий, цирконий, титан, железо и церий и компоненты взяты в следующем соотношении, мас.%:

Марганец 0,9-1,4
Магний 0,5-0,7
Скандий 0,17-0,3 5
Цирконий 0,05-0,12
Титан 0,01-0,05
Железо 0,4-0,6
Церий 0,0001-0,0009
Алюминий Остальное.

Технический результат - повышение прочности сплава после высокотемпературной пайки, что позволит снизить массу и габариты паяного узла летательного аппарата и, соответственно, повысить характеристики весовой отдачи летательного аппарата.

При предлагаемом содержании и соотношении компонентов в предлагаемом сплаве при распаде твердого раствора, зафиксированного при кристаллизации слитка, происходит образование вторичных мелкодисперсных интерметаллидов, содержащих в своем составе алюминий, скандий, цирконий и другие переходные металлы, входящие в состав сплава, упрочняющих сплав как непосредственно, так и за счет формирования в деформированном полуфабрикате нерекристаллизованной полигонизованной структуры. Упрочнение сплава происходит также за счет первичных интерметаллидов кристаллизационного происхождения, содержащих алюминий, марганец, железо, скандий и другие переходные металлы, входящие в состав сплава. Матрица сплава, представляющая собой в основном твердый раствор марганца и магния в алюминии, упрочняется дополнительно по механизму твердорастворного упрочнения. Это позволяет повысить прочность сплава после высокотемпературной пайки.

Пример

Получили предлагаемый сплав из шихты, состоящей из алюминия А99, магния МГ95, церия, двойных лигатур алюминий-марганец, алюминий-скандий, алюминий-цирконий, алюминий-титан и алюминий-железо. Сплав готовили в электрической плавильной печи и в стальную изложницу отливали плоские слитки размером 16×160×200 мм. Химический состав сплава приведен в таблице.

Слитки гомогенизировали, фрезеровали до толщины 14 мм, после чего при 400°С прокатывали на листы толщиной 3 мм, которые подвергали отжигу при 300°С.

Из полученных таким образом листов вырезали стандартные образцы для испытаний на растяжение. Также из листов вырезали заготовки, которые подвергали нагреву в вакуумной печи по режиму высокотемпературной пайки алюминиевых сплавов силуминовыми припоями, а именно нагрев до 615°С, выдержка при этой температуре в течение 5-ти минут, охлаждение с печью до комнатной температуры, после чего из этих заготовок вырезали стандартные образцы для испытаний на растяжение. Образцы испытывали при комнатной температуре в соответствии с ГОСТ 1497-84 с определением предела прочности при растяжении. Также проводили испытания сплава-прототипа, химический состав которого приведен в таблице.

Испытания показали, что предел прочности листов из предлагаемого сплава после нагрева по режиму высокотемпературной пайки силуминовыми припоями составляет 190 МПа, предел прочности листов из сплава-прототипа после аналогичного нагрева составляет 110 МПа.

Таким образом, предлагаемый сплав имеет прочность после пайки в 1,5-2 раза выше, чем известный сплав-прототип. Это позволит на 25-35% снизить вес паяного узла, изготавливаемого из предлагаемого сплава, что принципиально важно для изделий космической техники.

Деформируемый термически неупрочняемый сплав на основе алюминия, содержащий марганец, отличающийся тем, что он дополнительно содержит магний, скандий, цирконий, титан, железо и церий при следующем соотношении компонентов, мас.%:

Марганец 0,9-1,4
Магний 0,5-0,7
Скандий 0,17-0,35
Цирконий 0,05-0,12
Титан 0,01-0,05
Железо 0,4-0,6
Церий 0,0001-0,0009
Алюминий Остальное


 

Похожие патенты:

Изобретение относится к области металлургии сплавов на основе алюминия, в частности к сварочным материалам, предназначено для изготовления сварочной проволоки для сварки плавлением конструкций из деформируемого термически неупрочняемого сплава системы Al-Mg-Sc.
Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам системы алюминий-магний, предназначенным для использования в качестве конструкционного материала в различных областях техники: судостроении, авиакосмической и нефтегазодобывающей промышленности.
Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым алюминиевым сплавам, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала преимущественно для паяных конструкций теплообменников космических летательных аппаратов, получаемых методами высокотемпературной пайки.
Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым алюминиевым сплавам, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала преимущественно для теплообменников системы терморегулирования космических летательных аппаратов.

Изобретение относится к литейному и прокатному производству. .
Изобретение относится к области металлургии, а именно к производству алюминиевого литейного сплава для сварных конструкций массового производства, работающих в условиях знакопеременных нагрузок в различных климатических зонах.

Изобретение относится к сплавам типа Al-Zn-Mg, а именно к сплавам, предназначенным для сварных конструкций, таких как конструкции, используемые в области морского строительства, при изготовлении кузовов автомобилей, промышленных транспортных средств и неподвижных или подвижных резервуаров.

Изобретение относится к литейному и прокатному производству. .
Изобретение относится к области металлургии сплавов на основе алюминия системы Al-Mg-Li-Cu, используемых в качестве конструкционного материала для авиакосмической техники и транспортного машиностроения в виде обшивки и внутреннего силового набора.
Изобретение относится к упрочняемым естественным старением сплавам на основе алюминия, предназначенным для использования в виде полуфабрикатов в качестве конструкционного материала.
Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым алюминиевым сплавам, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала, преимущественно для токопроводящих и теплопроводных элементов конструкции в авиакосмической технике, судостроении, криогенном машиностроении и других отраслях промышленности
Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам системы алюминий-магний, используемым для сварных конструкций в судостроении, авиакосмической технике и транспортном машиностроении

Изобретение относится к цветной металлургии, в частности к литейным сплавам на основе алюминия, применяемым в авиационной технике и других отраслях машиностроения для нагруженных деталей внутреннего набора фюзеляжа, деталей управления, силовых кронштейнов и др
Изобретение относится к цветной металлургии и может быть применено при получении сплавов системы алюминий-свинец
Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, используемым в качестве конструкционного материала в авиационной промышленности

Изобретение относится к области металлургии и может быть использовано для изготовления отливок, предназначенных для получения деталей ответственного назначения, работающих под действием высоких нагрузок при температурах до 300-350°С, автомобильных двигателей, деталей водозаборной арматуры, ступеней погружного насоса для нефтегазового комплекса, деталей радиаторов отопления и др
Изобретение относится к области металлургии, а именно к разработке новых сплавов и технологий получения из них листовых полуфабрикатов методами термической обработки и обработки давлением

Изобретение относится к производству алюминиевых сплавов, в частности алюминиевых сплавов, содержащих обладающий высокой реакционной способностью магний. При приготовлении алюминиевого сплава, содержащего Mg, к расплаву сплава добавляют Са, Sr и Ва в таком количестве, чтобы содержание кальция составляло 0,001-0,5 мас.%, а их соотношение находилось в пределах, заключенных между линиями, соединяющими пять точек на фиг.1: точку Е (Са: 28 ат.%, Sr: 0 ат.%, Ва: 72 ат.%), точку F (Са: 26 ат.%, Sr: 30 ат.%, Ва: 44 ат.%), точку G (Са: 54 ат.%, Sr: 46 ат.%, Ва: 0 ат.%), точку Н (Са: 94 ат.%, Sr: 6 ат.%, Ва: 0 ат.%), точку I (Са: 78 ат.%, Sr: 0 ат.%, Ва: 22 ат.%), при исключении соотношений на образованных между указанными точками линиях. Способ позволяет ингибировать потери от окисления расплава сплава без использования Be, способного наносить ущерб здоровью человека. 3 н. и 3 з.п. ф-лы, 11 табл., 2 ил., 5 пр.

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов, упрочненных нанодисперсными частицами. Упрочняющие нанодисперсные частицы оксида циркония вводят в расплав на основе сплава алюминий-магний. Расплав кристаллизуют в поле центрифуги с коэффициентом гравитации 150-200 g и времени жизни расплава 8-10 сек/кг. Обеспечивается получение градиентного материала с пространственно неоднородной структурой и высокими свойствами. 2 з.п. ф-лы, 1 табл., 1 пр.
Наверх