Деформируемый термически неупрочняемый сплав на основе алюминия


 


Владельцы патента RU 2416658:

Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") (RU)

Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым алюминиевым сплавам, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала, преимущественно для токопроводящих и теплопроводных элементов конструкции в авиакосмической технике, судостроении, криогенном машиностроении и других отраслях промышленности. Предложен деформируемый термически неупрочняемый сплав на основе алюминия, содержащий, мас.%: магний 0,55-0,85, скандий 0,2-0,4, гафний 0,02-0,05, иттрий 0,0001-0,005, алюминий - остальное. Сплав характеризуется повышенной прочностью, электропроводностью и теплопроводностью. 2 табл.

 

Предлагаемое изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала преимущественно для токопроводящих и теплопроводных элементов конструкции в авиакосмической технике, судостроении, криогенном машиностроении и других отраслях промышленности.

Известен деформируемый термически неупрочняемый сплав на основе алюминия, применяемый в качестве теплопроводного материала, следующего химического состава (мас.%):

Марганец 1,0-1,6
Алюминий остальное

(см. Промышленные алюминиевые сплавы. Справ. изд. / Алиева С.Г., Альтман М.Б., Амбарцумян С.М. и др. 2-е изд., перераб. и доп. - М.: Металлургия, 1984, с.29).

Однако существующий сплав имеет низкие прочностные свойства.

Известен деформируемый термически неупрочняемый сплав на основе алюминия, применяемый в качестве теплопроводного материала, следующего химического состава (мас.%):

Магний 1,8-2,8
Марганец 0,2-0,6
Алюминий остальное

(см. Промышленные алюминиевые сплавы. Справ. изд. / Алиева С.Г., Альтман М.Б., Амбарцумян С.М. и др. 2-е изд., перераб. и доп. - М.: Металлургия, 1984, с.44), прототип.

Недостатком известного сплава является низкая прочность, низкая электропроводность и низкая теплопроводность и, как следствие, увеличенный вес элементов конструкции и пониженные характеристики весовой отдачи всей конструкции.

Предлагается деформируемый термически неупрочняемый сплав на основе алюминия, содержащий магний, который дополнительно содержит скандий, гафний и иттрий при следующем соотношении компонентов (мас.%):

Магний 0,55-0,85
Скандий 0,2-0,4
Гафний 0,02-0,05
Иттрий 0,0001-0,005
Алюминий остальное.

Предлагаемый сплав отличается от прототипа тем, что он дополнительно содержит скандий, гафний и иттрий и компоненты взяты в следующем соотношении (мас.%):

Магний 0,55-0,85
Скандий 0,2-0,4
Гафний 0,02-0,05
Иттрий 0,0001-0,005
Алюминий остальное.

Технический результат - повышение прочности, электропроводности и теплопроводности сплава, что позволит снизить массу и габариты элементов конструкции и соответственно повысить характеристики весовой отдачи конструкции в целом.

При предлагаемом содержании и соотношении компонентов в предлагаемом сплаве при неизбежных технологических нагревах (нагрев под деформацию, отжиг) происходит выделение вторичных мелкодисперсных интерметаллидов, содержащих в своем составе алюминий, скандий и другие переходные металлы, входящие в состав сплава, упрочняющих сплав, причем максимальное упрочнение достигается при нагреве до температуры 288°С и выдержке при этой температуре, при этом матрица сплава, представляющая собой, в основном, низкоконцентрированный твердый раствор магния в алюминии, обеспечивает необходимый уровень электро- и теплопроводности.

Пример

Получили предлагаемый сплав из шихты, состоящей из алюминия А99, магния МГ95, иттрия и двойных лигатур алюминий-скандий и алюминий-гафний. Сплав готовили в электрической тигельной плавильной печи и отливали плоские слитки размером 16×160×200 мм. Химический состав сплава приведен в табл.1.

Слитки механически обрабатывали до толщины 14 мм, после чего нагревали до 288°С и прокатывали вгорячую до толщины 6 мм, затем вхолодную до толщины 3 мм. Холоднокатаные заготовки подвергали отжигу при 288°С в течение 8 ч. Полученные таким образом отожженные листы толщиной 3 мм подвергали правке на роликоправильной машине, после чего испытывали при комнатной температуре с определением предела текучести, удельной электрической проводимости γ и теплопроводности λ. Также проводили испытания изготовленных тем же способом листов из сплава-прототипа, химический состав которого приведен в таблице 1.

Результаты испытаний приведены в таблице 2.

Таблица 1
Сплав Химический состав, мас.%
Магний Марганец Скандий Гафний Иттрий Алюминий
Предлагаемый 0,6 - 0,22 0,027 0,0025 Остальное
Прототип 2,5 0,3 - - - Остальное
Таблица 2
Сплав Прочность, электро- и теплопроводность отожженных листов
Предел текучести, σ0,2, МПа Удельная электрическая проводимость, γ, МСм/м Теплопроводность, λ, Вт/мК
Предлагаемый 255 30 188
Прототип 184 19,6 151

Таким образом, предлагаемый сплав имеет в 1,3 раза более высокий предел текучести, в 1,5 раза более высокую электропроводность и в 1,25 раза более высокую теплопроводность, что позволит в 1,2-1,3 раза снизить массу и габариты токопроводящих и теплопроводных элементов конструкции и соответственно повысить характеристики весовой отдачи конструкции в целом, что принципиально важно для авиакосмической техники, судостроения и других отраслей промышленности.

Деформируемый термически неупрочняемый сплав на основе алюминия, содержащий магний, отличающийся тем, что он дополнительно содержит скандий, гафний и иттрий при следующем соотношении, мас.%:

Магний 0,55-0,85
Скандий 0,2-0,4
Гафний 0,02-0,05
Иттрий 0,0001-0,005
Алюминий Остальное


 

Похожие патенты:

Изобретение относится к области металлургии сплавов на основе алюминия, в частности к сварочным материалам, предназначено для изготовления сварочной проволоки для сварки плавлением конструкций из деформируемого термически неупрочняемого сплава системы Al-Mg-Sc.
Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам системы алюминий-магний, предназначенным для использования в качестве конструкционного материала в различных областях техники: судостроении, авиакосмической и нефтегазодобывающей промышленности.
Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым алюминиевым сплавам, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала преимущественно для паяных конструкций теплообменников космических летательных аппаратов, получаемых методами высокотемпературной пайки.
Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым алюминиевым сплавам, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала преимущественно для теплообменников системы терморегулирования космических летательных аппаратов.

Изобретение относится к литейному и прокатному производству. .
Изобретение относится к области металлургии, а именно к производству алюминиевого литейного сплава для сварных конструкций массового производства, работающих в условиях знакопеременных нагрузок в различных климатических зонах.

Изобретение относится к сплавам типа Al-Zn-Mg, а именно к сплавам, предназначенным для сварных конструкций, таких как конструкции, используемые в области морского строительства, при изготовлении кузовов автомобилей, промышленных транспортных средств и неподвижных или подвижных резервуаров.

Изобретение относится к литейному и прокатному производству. .
Изобретение относится к области металлургии сплавов на основе алюминия системы Al-Mg-Li-Cu, используемых в качестве конструкционного материала для авиакосмической техники и транспортного машиностроения в виде обшивки и внутреннего силового набора.
Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам системы алюминий-магний, используемым для сварных конструкций в судостроении, авиакосмической технике и транспортном машиностроении

Изобретение относится к цветной металлургии, в частности к литейным сплавам на основе алюминия, применяемым в авиационной технике и других отраслях машиностроения для нагруженных деталей внутреннего набора фюзеляжа, деталей управления, силовых кронштейнов и др
Изобретение относится к цветной металлургии и может быть применено при получении сплавов системы алюминий-свинец
Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, используемым в качестве конструкционного материала в авиационной промышленности

Изобретение относится к области металлургии и может быть использовано для изготовления отливок, предназначенных для получения деталей ответственного назначения, работающих под действием высоких нагрузок при температурах до 300-350°С, автомобильных двигателей, деталей водозаборной арматуры, ступеней погружного насоса для нефтегазового комплекса, деталей радиаторов отопления и др
Изобретение относится к области металлургии, а именно к разработке новых сплавов и технологий получения из них листовых полуфабрикатов методами термической обработки и обработки давлением

Изобретение относится к производству алюминиевых сплавов, в частности алюминиевых сплавов, содержащих обладающий высокой реакционной способностью магний. При приготовлении алюминиевого сплава, содержащего Mg, к расплаву сплава добавляют Са, Sr и Ва в таком количестве, чтобы содержание кальция составляло 0,001-0,5 мас.%, а их соотношение находилось в пределах, заключенных между линиями, соединяющими пять точек на фиг.1: точку Е (Са: 28 ат.%, Sr: 0 ат.%, Ва: 72 ат.%), точку F (Са: 26 ат.%, Sr: 30 ат.%, Ва: 44 ат.%), точку G (Са: 54 ат.%, Sr: 46 ат.%, Ва: 0 ат.%), точку Н (Са: 94 ат.%, Sr: 6 ат.%, Ва: 0 ат.%), точку I (Са: 78 ат.%, Sr: 0 ат.%, Ва: 22 ат.%), при исключении соотношений на образованных между указанными точками линиях. Способ позволяет ингибировать потери от окисления расплава сплава без использования Be, способного наносить ущерб здоровью человека. 3 н. и 3 з.п. ф-лы, 11 табл., 2 ил., 5 пр.

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов, упрочненных нанодисперсными частицами. Упрочняющие нанодисперсные частицы оксида циркония вводят в расплав на основе сплава алюминий-магний. Расплав кристаллизуют в поле центрифуги с коэффициентом гравитации 150-200 g и времени жизни расплава 8-10 сек/кг. Обеспечивается получение градиентного материала с пространственно неоднородной структурой и высокими свойствами. 2 з.п. ф-лы, 1 табл., 1 пр.
Сплав на основе алюминия предназначен для изготовления деформированных полуфабрикатов в виде штамповок и труб для использования в газовых центрифугах, в компрессорах низкого давления, вакуумных молекулярных насосах и в других сильно нагруженных изделиях, работающих при умеренно повышенных температурах. Сплав содержит, в мас.%: цинк 6,6-7,4, магний 3,2-4,0, медь 0,8-1,4, скандий 0,12-0,30, цирконий 0,06-0,20, бериллий 0,0001-0,005, кобальт 0,05-0,15, никель 0,35-0,65, железо 0,25-0,65, алюминий - остальное. Техническим результатом изобретения является повышение прочности при сохранении пластичности и пониженной плотности сплава. 3 табл., 1 пр.
Наверх