Способ неинвазивного электрофизиологического исследования сердца



Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца
Способ неинвазивного электрофизиологического исследования сердца

 


Владельцы патента RU 2417051:

Ревишвили Амиран Шотаевич (RU)

Изобретение относится к кардиологии, сердечно-сосудистой хирургии, функциональной диагностике и клинической электрофизиологии сердца. Способ неинвазивного электрофизиологического исследования сердца включает следующие стадии: закрепление регистрирующих электродов на поверхности грудной клетки; регистрация ЭКГ; обработка ЭКГ-сигналов в режиме реального времени; ретроспективная обработка полученных ЭКГ; компьютерная или магнитно-резонансная томография грудной клетки; построение и редактирование компьютерных воксельных моделей органов грудной клетки и сердца; построение полигональных моделей торса и сердца; автоматическое определение координат регистрирующих электродов на поверхности грудной клетки; интерполяция значений ЭКГ-сигналов в узлы полигональной сетки; реконструкция потенциала электрического поля в заданных точках; визуализация результатов реконструкции электрического поля сердца; клиническая оценка результатов. При этом для построения воксельной модели используют алгоритм факторизации сдвига - деформации для преобразования просмотра. Стадия построения полигональных моделей включает: фильтрацию исходных воксельных моделей, построение триангуляционной поверхности, разреживание и улучшение качества сетки с использованием метода пуассоновской реконструкции. Изобретение позволяет повысить точность неинвазивной диагностики нарушений сердечного ритма и других сердечно-сосудистых заболеваний.7 з.п. ф-лы, 19 ил.

 

Текст описания приведен в факсимильном виде.

1. Способ неинвазивного электрофизиологического исследования сердца, включающий следующие стадии:
закрепление одноразовых регистрирующих электродов на поверхности грудной клетки;
регистрация ЭКГ во множестве однополюсных отведений с поверхности грудной клетки;
обработка ЭКГ-сигналов в режиме реального времени;
ретроспективная обработка полученных ЭКГ;
компьютерная томография (КТ) или магнитно-резонансная томография (МРТ) грудной клетки пациента закрепленными электродами;
построение по томографическим данным и редактирование компьютерных воксельных моделей органов грудной клетки и сердца, при этом для построения воксельной модели используют алгоритм факторизации сдвига - деформации для преобразования просмотра (Shear-Warp Factorization of the Viewing Transformation);
построение при помощи компьютерной программы полигональных моделей торса и сердца, причем стадия построения полигональных моделей включает следующие этапы:
фильтрация исходных вексельных моделей для уменьшения уровня случайного шума;
построение триангуляционной поверхности методом «марширующих кубов» или «методом исчерпывания» («advancing front method»);
разреживание и улучшение качества сетки с использованием метода пуассоновской реконструкции (Poisson Surface Reconstruction);
определение координат регистрирующих электродов на поверхности грудной клетки проводят в автоматическом режиме по данным КТ и МРТ;
интерполяция значений ЭКГ-сигналов в узлы полигональной сетки, которую осуществляют с использованием радиальных базисных функций;
реконструкция потенциала электрического поля в заданных точках грудной клетки, эпикардиальной поверхности сердца, поверхности межжелудочковой и межпредсердной перегородок;
визуализация результатов реконструкции электрического поля сердца в виде эпикардиальных электрограмм, изохронных и изопотенциальных карт, а также динамических карт (propagation maps) на полигональных моделях сердца и его структур;
клиническая оценка результатов.

2. Способ по п.1, в котором для КТ используют наклеиваемые металлические хлор-серебряные электроды, а для МРТ - наклеиваемые графитовые электроды.

3. Способ по п.1, в котором одноразовые электроды закрепляют в виде горизонтальных пяти - восьми поясов, расположенных на одинаковых расстояниях по вертикали, причем первый пояс располагают на уровне грудинно-ключичного сочленения, а последний пояс - на уровне нижнего края реберной поверхности и каждый пояс включает от 16 до 30 электродов, расположенных на одинаковых расстояниях по окружности грудной клетки.

4. Способ по п.1, в котором реконструкцию потенциала электрического поля сердца проводят путем численного решения задачи Коши для уравнения Лапласа методом граничных элементов, включающим решение возникающей в результате применения метода граничных элементов итоговой системы матрично-векторных уравнений

при помощи итерационной процедуры



при этом на каждом шаге итерационного процесса для решения уравнения (13) используют регуляризирующий метод решения, выбранный из группы: метод регуляризации Тихонова, в котором параметр регуляризации определяют по формуле

где α - параметр регуляризации, α0 - малый действительный параметр, зависящий от погрешности задания граничных условий обратной задачи электрокардиографии, р - положительный действительный параметр, зависящий от скорости сходимости итерационной процедуры (11)-(13), β - положительный действительный параметр, зависящий от точности начального приближения (11) в итерационной процедуре (11)-(13),
k - номер итерации в итерационной процедуре (11)-(13),
или
регуляризирующий алгоритм на основе SVD-разложения матрицы уравнения (13) с заменой нулями сингулярных чисел, меньших заданного положительного числа ε, причем параметр ε определяют согласно формуле:
ε=ε0+β·p-(k/2), где ε0 - малый действительный параметр, зависящий от погрешности задания граничных условий обратной задачи электрокардиографии, р - положительный действительный параметр, зависящий от скорости сходимости итерационной процедуры (11)-(13), β - положительный действительный параметр, зависящий от точности начального приближения (11) в итерационной процедуре (11)-(13), k - номер итерации в итерационной процедуре (11)-(13); или
регуляризирующий алгоритм решения уравнения (13) на основе итерационного метода обобщенных минимальных невязок (Generalized minimal residual method) с ограничением числа итераций, причем требуемое число итераций, требуемых для решения уравнения (13), определяют по формуле: n=n0+λ·k,
где n - число итераций алгоритма обобщенных минимальных невязок, k - номер итерации в итерационной процедуре (11)-(13), n0 и λ - положительные целые числа, зависящие от точности начального приближения (11) и скорости сходимости итерационной процедуры (11)-(13),
общее число итераций алгоритма (11)-(13) определяют по принципу невязки (принцип Морозова).

5. Способ по п.4, в котором для решения уравнения

системы матрично-векторных уравнений используется метод регуляризации Тихонова, причем параметр регуляризации определяют по формуле

где α - параметр регуляризации, α0 - малый действительный параметр, зависящий от погрешности задания граничных условий обратной задачи электрокардиографии, р - положительный действительный параметр, зависящий от скорости сходимости итерационной процедуры, β - положительный действительный параметр, зависящий от точности начального приближения в итерационной процедуре, k - номер итерации.

6. Способ по п.4, в котором для решения уравнения

системы матрично-векторных уравнений используется регуляризирующий алгоритм на основе SVD-разложения матрицы уравнения с заменой нулями сингулярных чисел, меньших заданного положительного числа ε, причем параметр ε определяют согласно формуле
ε=ε0+β·p-(k/2),
где ε0 - малый действительный параметр, зависящий от погрешности задания граничных условий обратной задачи электрокардиографии;
р - положительный действительный параметр;
зависящий от скорости сходимости итерационной процедуры;
β - положительный действительный параметр, зависящий от точности начального приближения в итерационной процедуре;
k - номер итерации.

7. Способ по п.4, в котором для решения уравнения

системы матрично-векторных уравнений используется регуляризирующий алгоритм на основе итерационного метода обобщенных минимальных невязок (Generalized minimal residual method) с ограничением числа итераций, причем требуемое число итераций определяют по формуле
n=n0+λ·k,
где n - число итераций алгоритма;
k - номер итерации в общей итерационной процедуре;
n0 и λ - положительные целые числа, зависящие от точности начального приближения и скорости сходимости процедуры (11)-(13)


8. Способ по п.4, в котором уравнения системы матрично-векторных уравнений решаются на основе «быстрого мультипольного метода» (Fast Multipole Method).



 

Похожие патенты:
Изобретение относится к медицине, хирургии печени и магниторезонансной (МР) диагностике при наличии холангиостомы. .

Изобретение относится к медицине, фтизиатрии и может быть использовано для лучевой диагностики туберкулеза грудины и ребер у детей. .
Изобретение относится к медицине, оториноларингологии и может быть использовано для диагностики адгезивного среднего отита. .
Изобретение относится к медицине, оториноларингологии и может быть использовано для диагностики дисфункции слуховой трубы. .

Изобретение относится к способу и устройству для направления оборудования для лучевой терапии, находящегося снаружи тела человека или тела животного. .

Изобретение относится к кардиологии, сердечно-сосудистой хирургии, функциональной диагностике и клинической электрофизиологии сердца. .
Изобретение относится к медицине, а именно нейрохирургии и неврологии. .

Изобретение относится к области медицины, в частности к медицинской радиологии, и может быть использовано в эндокринологии и онкологии. .

Изобретение относится к медицине, точнее к кардиологии, и может найти применение в диагностике и выборе тактики лечения ишемической болезни сердца (ИБС). .

Изобретение относится к кардиологии, сердечно-сосудистой хирургии, функциональной диагностике и клинической электрофизиологии сердца. .

Изобретение относится к области медицины, а именно - к лучевой диагностике. .

Изобретение относится к медицине и предназначено для оценки жизнеспособности ткани миокарда. .
Изобретение относится к области медицины, а именно к вертебрологии. .

Изобретение относится к области медицины, в частности к проведению антропометрического анализа, включающего следующие этапы: получение трехмерной сканограммы головы человека с использованием специального метода получения трехмерного медицинского изображения, формирование трехмерной модели поверхности с использованием данных трехмерной сканограммы, формирование, по меньшей мере, одной двумерной цефалограммы, геометрически связанной с трехмерной моделью поверхности на основе трехмерной сканограммы, задание анатомических ориентиров на, по меньшей мере, одной двумерной цефалограмме и/или на трехмерной модели поверхности, выполнение анализа с использованием анатомических ориентиров; получение информации для планирования репозиции костного фрагмента путем выполнения антропометрического анализа и устройство для проведения антропометрического анализа.

Изобретение относится к экспериментальной медицине и магнитно-резонансной томографии, может быть использовано в онкологии для диагностики и терапии злокачественных опухолей.

Изобретение относится к медицинской технике, а именно к ультразвуковым терапевтическим системам с управлением по информации магниторезонансного томографа. .

Изобретение относится к способу динамической поляризации ядер (ДПЯ) соединения, содержащего одну или более чем одну карбоксильную группу, отличающийся тем, что радикал формулы (I) где М представляет собой один эквивалент катиона щелочного металла; и R1, которые являются одинаковыми или разными, каждый представляет собой C1-С6 -алкильную группу с прямой или разветвленной цепью или группу -(CH2)n-X-R2, где n равно 1, 2 или 3; X представляет собой О; и R2 представляет собой С1-С 4-алкильную группу с прямой или разветвленной цепью, используют в качестве парамагнитного агента в указанном процессе ДПЯ.

Изобретение относится к области медицины, в частности к электрокардиографии, и представляет собой устройство устранения дрейфа изоэлектрической линии. .
Наверх