Способ бесконтактного определения теплофизических свойств твердых тел

Способ включает нагрев поверхности эталонного образца и поверхностей последовательно расположенных с эталоном изучаемых образцов твердых тел источником тепловой энергии. Источник движется с постоянной скоростью относительно эталона и изучаемых образцов твердых тел. Осуществляют измерение избыточных температур поверхностей эталона и изучаемых образцов твердых тел в точках на линии нагрева и определение теплофизических свойств по величине избыточных температур. В способе используют образцы произвольной формы, при этом эталонный образец является однородным образцом фиксированных размеров. Посредством решения обратной задачи теплопроводности для эталона восстанавливают закон распределения тепловой энергии источника. Теплопроводность и объемную теплоемкость образцов определяют посредством решения обратно-коэффициентной задачи теплопроводности. Технический результат заключается в расширении функциональных возможностей. 1 з.п. ф-лы.

 

Настоящее изобретение относится к способам определения теплофизических свойств твердых тел, например, горных пород.

Правильный учет значений теплофизических свойств горных пород, таких как теплопроводность, теплоемкость и температуропроводность, приобретает первостепенную важность при промышленном применении тепловых способов повышения нефтеотдачи, предполагающих предварительное моделирование процессов тепломассобмена в резервуаре (нефтяной пласт) и скважинах, а также определение теплового режима скважинного оборудования.

Предлагаемый способ бесконтактного определения теплофизических свойств твердых тел отличается от известных способов (см., например, патент RU 2153664 или патент RU 2011977) возможностью проведения измерений на коротких образцах произвольной формы, возможностью использования только одного эталона в эксперименте и расширением функциональных возможностей измерений за счет обеспечения измерений, кроме теплопроводности, также и объемной теплоемкости и повышения точности измерений за счет снижения систематической погрешности, появляющейся в существующих способах из-за приближенного учета кривизны поверхности образцов.

Целью изобретения является расширение функциональных возможностей за счет обеспечения измерений объемной теплоемкости и повышения точности измерений.

Предлагаемый способ бесконтактного определения теплофизических свойств твердых тел, в том числе и обладающих неоднородными свойствами, включает нагрев поверхности образца при движении блока нагрева относительно образца с последующим определением избыточных температур, по которым проводится определение теплофизических свойств, таких как теплопроводность и (или) температуропроводность. Способ может применяться для образцов произвольной формы, позволяя осуществлять измерения теплопроводности в широком диапазоне от 0,06 до 250 Вт/(м·К).

Способ измерений теплофизических свойств твердых тел заключается в нагреве поверхности эталонного образца - однородного образца фиксированных размеров с известными постоянными теплопроводностью и объемной теплоемкостью и поверхностей последовательно расположенных с эталоном изучаемых образцов твердых тел источником тепловой энергии (Попов Ю.А. Некоторые особенности методики массовых детальных исследований теплопроводности горных пород // Изв. ВУЗов. Геология и разведка, №4 - 1984, с.72-76.), движущимся с постоянной скоростью относительно эталона и изучаемых образцов твердых тел, измерении избыточных температур (т.е. разницы между температурой поверхности и начальной температурой) поверхностей эталона и изучаемых образцов твердых тел в точках на линии нагрева (линии на поверхности образца, по которой движется центр источника нагрева) и определении теплопроводности изучаемых образцов по результатам измерений избыточных температур на поверхностях эталона и изучаемых образцов.

При измерениях на стандартном керне, представляющем собой цилиндрическую колонку (столбик) горной породы, достаточно плотной, чтобы сохранять слоистую структуру, размером 30×30 мм, и использовании плоского эталонного образца обрабатывают результаты измерения избыточных температур для эталона и изучаемых образцов таким образом, что при помощи теоретического моделирования (изучение процесса при помощи теоретических моделей (в данном случае при помощи численного решения) физических процессов, сопровождающих процесс измерений, определяют различие избыточных температур для плоской и цилиндрической поверхностей, и вносят установленную поправку в измеренные избыточные температуры.

При измерениях на стандартном керне решают обратно-коэффициентную задачу теплопроводности (вычисление коэффициента теплопроводности или объемной теплоемкости по значению температуры в отдельных точках, Бек Дж., Блакуэлл Б., Сент-Клэр Ч., мл. / Некорректные обратные задачи теплопроводности: Пер. с англ. - М.: Мир, 1989. - 312 с.) и с использованием решения обратно-коэффициентной задачи теплопроводности определяют теплопроводность и объемную теплоемкость цилиндрических образцов стандартного керна.

При измерениях на плоских образцах решают обратно-коэффициентную задачу теплопроводности и с использованием решения обратно-коэффициентной задачи теплопроводности определяют теплопроводность и объемную теплоемкость плоских образцов.

При реализации способа эталонный и исследуемый образцы устанавливаются на стол. Лазер, используемый в качестве источника тепловой энергии, включается на нагрев и перемещается прямолинейно с постоянной скоростью (2-4 мм/с). Измерения температуры проводятся последовательно на поверхности эталона и образца. По решению обратной задачи теплопроводности для эталонного образца восстанавливается закон распределения тепловой энергии источника. По решению обратной задачи теплопроводности для образца восстанавливается значение коэффициента теплопроводности или объемной теплоемкости.

1. Способ бесконтактного определения теплофизических свойств твердых тел, включающий нагрев поверхности эталонного образца и поверхностей последовательно расположенных с эталоном изучаемых образцов твердых тел источником тепловой энергии, движущимся с постоянной скоростью относительно эталона и изучаемых образцов твердых тел, измерение избыточных температур поверхностей эталона и изучаемых образцов твердых тел в точках на линии нагрева и определение теплофизических свойств по величине избыточных температур, отличающийся тем, что используют образцы произвольной формы, при этом эталонный образец является однородным образцом фиксированных размеров, посредством решения обратной задачи теплопроводности для эталона восстанавливают закон распределения тепловой энергии источника, и теплопроводность и объемную теплоемкость образцов определяют посредством решения обратно-коэффициентной задачи теплопроводности.

2. Способ бесконтактного определения теплофизических свойств твердых тел, обладающих неоднородными свойствами по п.1, отличающийся тем, что в качестве изучаемого образца используют стандартный керн.



 

Похожие патенты:

Изобретение относится к электроизмерительной технике и может быть использовано для измерения влажности различных сыпучих материалов, в том числе зерна и почвы. .

Изобретение относится к медицинской технике, а именно биодатчикам, и представляет собой сенсорное устройство для обнаружения магнитных частиц. .

Изобретение относится к области аналитической химии и может быть использовано в пищевой, фармакологической, медицинской и химической промышленности при определении микроколичеств селена и йода в пищевых продуктах, биологических объектах, лекарственных препаратах, БАДах, объектах окружающей среды.

Изобретение относится к электрохимическим биосенсорным полоскам и способам определения концентрации аналита в пробе. .

Изобретение относится к области измерительной техники и может быть использованы для высокоточного определения различных физических свойств (плотности, концентрации, смеси веществ, влагосодержания и др.) веществ (жидкостей, газов), находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.) и перемещаемых по трубопроводам.

Изобретение относится к устройствам для анализа воды по следующим характеристикам: мутности, цветности, температуре, результатам седиментационного анализа, электропроводности, вязкости, электрофоретической подвижности, дзета-потенциалу частиц взвеси, химической потребности в кислороде, содержанию хлора, водородному показателю и редокс-потенциалу и может быть использовано для мониторинга водных объектов, технического и питьевого водоснабжения.

Изобретение относится к аналитической химии и может быть использовано для экспресс-анализа технологических растворов, сточных и оборотных вод предприятий свинцово-цинковой отрасли цветной металлургии.

Гигрометр // 2413935
Изобретение относится к области аналитического приборостроения. .

Изобретение относится к устройствам для непрерывного измерения молекулярного кислорода в потоках газа технологической цепочки. .

Изобретение относится к определению теплофизических характеристик. .

Изобретение относится к области анализа углеводородных топлив. .

Изобретение относится к измерительной технике, а именно к устройствам для определения влажности льносырья методом высушивания образца. .

Изобретение относится к области термической обработки деталей из стали, в том числе деталей, имеющих сложную форму. .
Изобретение относится к области анализа. .

Изобретение относится к области термолинзовой спектроскопии. .
Изобретение относится к методам экспрессного анализа. .

Изобретение относится к физико-химическим методам измерения и может быть использовано для экспериментального определения коэффициента дымообразования твердых веществ и материалов, применяемых, в частности, в шахтах
Наверх