Турбореактивный двигатель



Турбореактивный двигатель
Турбореактивный двигатель
Турбореактивный двигатель
Турбореактивный двигатель
Турбореактивный двигатель
Турбореактивный двигатель

 


Владельцы патента RU 2418969:

Грехнев Андрей Владимирович (RU)

Турбореактивный двигатель содержит входное устройство, компрессор, основную камеру сгорания, газовую турбину для привода компрессора, дополнительную высокотемпературную камеру сгорания с отбором воздуха в нее из компрессора, реактивное сопло, расположенное за высокотемпературной камерой сгорания. Канал для выхода газа из турбины в атмосферу выполнен с увеличивающейся к выходу площадью проходного сечения. Выходное отверстие канала для выхода газа из турбины в атмосферу расположено в зоне пониженного давления, образованного течением воздуха, обтекающим мотогандолу, а также реактивной струей газа, выходящего из реактивного сопла, расположенного за высокотемпературной камерой сгорания. Изобретение позволяет летательному аппарату достичь больших сверхзвуковых скоростей полета. 4 ил.

 

Изобретение относится к области машиностроения и может быть использовано в качестве движителя различных летательных аппаратов.

Известен турбореактивный двигатель (ТРД) (см. "Теория и расчет воздушно-реактивных двигателей" под ред. Шляхтенко С.М., М. Машиностроение. 1987 г. стр.16 и 17, Рис.1.1, а также Рис.1.2; Рис.1.3; Рис.1.4).

Известен ТРД (см. сборник обзоров и рефератов по материалам иностранной печати "Новости зарубежной науки и техники" серия "авиационное двигателестроение" №3, 1987 г. М. Центральный институт авиационного моторостроения (ЦИАМ) стр.1. рис.1), имеющий выносную форсажную камеру.

Известен ТРД, выбранный за прототип (см. "Теория реактивных двигателей, рабочий процесс и характеристики" под ред. Стечкина Б.С., М. Государственное издательство оборонной промышленности 1958 г. стр.395 Фиг.14.8), содержащий входное устройство, компрессор, основную камеру сгорания, турбину для привода компрессора, выходное устройство с основным реактивным соплом и отдельные высокотемпературные камеры сгорания, в которые подается воздух из компрессора, с выходными каналами и соплами.

Недостатком прототипа является то, что в выходном канале за турбиной имеется основное реактивное сопло, в котором часть энергии сгорания топлива в основной камере сгорания преобразуется в реактивную тягу. При больших скоростях полета скорость реактивной струи и скорость полета становятся близкими вследствие пониженных значений давления и температуры газа за турбиной и перед основным соплом, поэтому двигатель теряет тягу и имеет ограничение применения по скорости полета. Кроме того, отвод энергии сгорания топлива в основной камере сгорания в основное реактивное сопло, расположенное за турбиной, уменьшает работу турбины, используемую на привод компрессора. Уменьшение работы привода компрессора уменьшает давление, а также расход воздуха за компрессором, а это также приводит к уменьшению тяги двигателя.

С целью обеспечения применения газотурбинного двигателя при больших скоростях полета предлагаемый турбореактивный двигатель, содержащий входное устройство, компрессор, основную камеру сгорания, газовую турбину для привода компрессора, дополнительную высокотемпературную камеру сгорания с отбором воздуха в нее из компрессора, реактивное сопло, расположенное за высокотемпературной камерой сгорания, имеет канал для выхода газа из турбины в атмосферу, выполненный с увеличивающейся к выходу площадью проходного сечения, а выходное отверстие канала для выхода газа из турбины в атмосферу может быть расположено в зоне пониженного давления, образованного течением воздуха, обтекающим мотогандолу, а также реактивной струей газа, вытекающего из реактивного сопла, расположенного за высокотемпературной камерой сгорания, обеспечивая полное, за исключением потерь, использование энергии сгорания топлива в основной камере сгорания для работы турбины, используемой для привода компрессора, что приводит к увеличению давления, а также расхода воздуха за компрессором и, следовательно, к увеличению тяги двигателя и возможности достижения большой скорости полета.

Как известно, реактивная тяга двигателя имеет математическое выражение:

Р=Gг·Pуд

где Р - реактивная тяга, Н;

Gг - массовый расход газа в единицу времени, кг/с;

Руд - удельная реактивная тяга - тяга, создаваемая единицей массы газа, Н·с/кг или м/с.

Руд=Cc-Vn здесь:

Сс - скорость истечения газа из реактивного сопла, м/с;

Vn - скорость полета летательного аппарата, м/с.

Зависимость скорости истечения газов из реактивного сопла от параметров физического состояния газа определяется формулой:

где φc - коэффициент скорости реактивного сопла (обычно его значение φc=0,97…0,98);

kг - показатель адиабаты;

Rг - газовая постоянная (для данных условий kг=1,3; Rг=287,6 Дж/кг·К);

- полная температура газа перед реактивным соплом, К;

- полное давление газа перед реактивным соплом, Па;

Рн - атмосферное давление воздуха (среда, куда истекает газ), Па.

Анализируя представленные математические зависимости, возможно сделать следующие выводы: с повышением - температуры газа и - давления газа перед реактивным соплом увеличиваются удельная тяга и реактивная тяга двигателя.

У прототипа температура и давление газа перед основным реактивным соплом равны температуре и давлению газа, выходящего из турбины, которые значительно меньше, чем температура и давление в основной камере сгорания. Поэтому при больших скоростях полета скорость истечения газа из основного реактивного сопла становится близкой к скорости полета и двигатель теряет тягу.

Кроме того, наличие у прототипа основного реактивного сопла, находящегося в выходном устройстве за турбиной, значительно уменьшает перепад температуры и давления на турбине. Это приводит к уменьшению работы турбины, идущей на привод компрессора, и, следовательно, к уменьшению расхода, а также давления воздуха, создаваемых компрессором, что приводит к уменьшению реактивной тяги двигателя. Известно, что работа турбины (Lт), затрачиваемая на привод компрессора, равна:

где и - полные температура и давление газа перед турбиной;

- полное давление газа за турбиной;

- коэффициент полезного действия турбины.

Анализируя формулу, видим, что увеличение ведет к уменьшению Lт.

По уравнению Бернулли, без учета потерь, имеем:

где P1, c1 - статическое давление и скорость газа в начале канала, например, на выходе из турбины;

ρ - плотность газа;

P2, с2 - статическое давление и скорость газа в конце капала, например, на выходе из канала в атмосферу.

Для преодоления атмосферного давления на выходе из выходного канала, расположенного за турбиной, необходимо увеличить давление Р2 за счет уменьшения скорости с2. Скорость с2 будет меньше c1, давление P2 больше давления P1, то есть канал должен быть расширяющимся (диффузорным). Если Р2 равно Р2, то и с2 равно c1, канал будет постоянного проходного сечения.

Как известно, при полете происходит взаимодействие струи газа, выходящего из реактивного сопла двигателя, с внешним потоком, обтекающим мотогандолу. Вследствие этого взаимодействия в кормовой части давление становится ниже давления в окружающей среде, которое оказывает сопротивление движению летательного аппарата (так называемое донное сопротивление). Подача газа из турбины в зону разрежения увеличит это давление и, как следствие, уменьшит донное сопротивление летательного аппарата. Кроме того, увеличится работа турбины, так как увеличится перепад давления на турбине.

На фигурах 1-4 представлены конструктивные схемы газотурбинного двигателя. В связи с тем, что одинаковые элементы по всем фигурам обозначены одними цифрами, нумерация идет с 1 по 9 по всем фигурам.

За воздухозаборником 1 расположен компрессор 2, который подает воздух в основную камеру сгорания 3, а также в высокотемпературную камеру сгорания 4. За основной камерой сгорания 3 расположена турбина 5. Лопатки турбины могут располагаться на лопатках компрессора - фиг.1 и 2, а также на собственном диске - фиг.3 и 4. За турбиной 5 имеется канал 6 для выхода газа из турбины в атмосферу, например в зону 7 пониженного давления в корме двигателя. Высокотемпературная камера сгорания 4 соединена с регулируемым реактивным соплом 8. Воздух из компрессора 2 может поступать в основную камеру сгорания 3, а также в высокотемпературную камеру 4, например по каналу 9 обтекаемой стойки на фиг.1 и 3.

Турбореактивный двигатель работает следующим образом: воздух из атмосферы поступает через входное устройство 1 в компрессор 2, в котором повышается его давление. Одна часть сжатого воздуха поступает в основную камеру сгорания 3, другая части - в высокотемпературную камеру сгорания 4. В основной камере сгорания 3 при сжигании топлива температура воздуха с продуктами сгорания повышается, при этом максимальное значение температуры газа ограничено условием прочности турбины 5. Из основной камеры сгорания 3 газ поступает в турбину и, при условии минимального давления за турбиной, максимально используется работа газа. Для обеспечения минимального давления газа за турбиной канал 6 для выхода газа из турбины в атмосферу выполнен с увеличивающейся к выходу площадью проходного сечения канала. Кроме того, выходное отверстие канала 6 для выхода газа из турбины в атмосферу расположено в зоне 7 пониженного давления в корме двигателя, образованного течением воздуха, обтекающего мотогандолу, а также реактивной струей газа, выходящей из регулируемого реактивного сопла 8. При сжигании топлива в высокотемпературной камере сгорания 4 максимальная температура газа имеет меньше ограничений по величине и значительно выше, чем в основной камере сгорания 3.

Использование турбиной увеличенной работы газа, передаваемой компрессору, приводит к увеличению расхода, а также давления воздуха, поступающего в высокотемпературную камеру сгорания, что позволяет достичь высокой скорости реактивной струи и позволяет иметь реактивную тягу при высоких скоростях полета.

Турбореактивный двигатель, обладающий достоинствами при высоких и средних скоростях полета, может быть использован для сверхзвуковых самолетов, крылатых ракет, снарядов, в качестве первой ступени космических ракет и для других летательных аппаратов.

Турбореактивный двигатель, содержащий входное устройство, компрессор, основную камеру сгорания, газовую турбину для привода компрессора, дополнительную высокотемпературную камеру сгорания с отбором воздуха в нее из компрессора, реактивное сопло, расположенное за высокотемпературной камерой сгорания, отличающийся тем, что канал для выхода газа из турбины в атмосферу выполнен с увеличивающейся к выходу площадью проходного сечения, а выходное отверстие канала для выхода газа из турбины в атмосферу расположено в зоне пониженного давления, образованного течением воздуха, обтекающим мотогандолу, а также реактивной струей газа, выходящего из реактивного сопла, расположенного за высокотемпературной камерой сгорания.



 

Похожие патенты:

Изобретение относится к газотурбинным установкам для механического привода и для привода электрогенератора. .

Изобретение относится к газотурбинным установкам, выполненным на основе конвертированного авиационного двухконтурного двигателя. .

Изобретение относится к газотурбинным установкам на базе конвертируемых авиационных двигателей для привода электрогенератора или для механического привода. .

Изобретение относится к газотурбинным установкам, выполненным на базе конвертированного двухконтурного авиационного двигателя. .

Изобретение относится к газотурбинным установкам для механического привода или для привода электрогенератора, выполненного на базе конвертированного авиационного двигателя.

Изобретение относится к области двигателестроения и может быть использовано преимущественно в малоразмерных двухконтурных газотурбинных двигателях. .

Изобретение относится к области авиадвигателестроения, в частности к двигателям для летательных аппаратов. .

Изобретение относится к газотурбинным установкам для привода внешней нагрузки, преимущественно электрогенератора в составе электростанции, или для механического привода.

Изобретение относится к области авиационной техники, в частности к турбореактивному двухконтурному двигателю (ТРДД) летательного аппарата, и может быть использовано в качестве силовой установки в других областях промышленности

Изобретение относится к разгрузочному устройству, предназначенному для отвода части первичного потока во вторичный поток в турбореактивном двигателе

Изобретение относится к области авиационного двигателестроения, в частности к снижению уровня инфракрасного излучения (ИКИ) турбореактивных двигателей (ТРД) в заднюю полусферу самолета

Изобретение относится к области компрессорных воздушно-реактивных двигателей, представляющих собой реактивный воздушный винт (пропеллер с реактивным приводом). Камеру сгорания топлива и сверхзвуковое реактивное сопло компрессорного воздушно-реактивного двигателя вращают на конце полой лопасти воздушного винта центробежного компрессора с окружной скоростью концов лопастей >300 м/с. Газ, вытекающий из камеры сгорания топлива в сверхзвуковое реактивное сопло, перед поступлением в сопло предварительно смешивают в камере смешения газов с атмосферным воздухом, имеющим степень сжатия >40. Смешивание вытекающего из камеры сгорания топлива газа с атмосферным воздухом примерно той же плотности увеличивает массу газа, поступающего в сопло, что повышает летный КПД сопла и, соответственно, повышает КПД двигателя. 2 ил.

Изобретение относится к газотурбинным двигателям и может быть применимо для сверхзвуковой военной авиации и гиперзвуковых самолетов. Водородный воздушно-реактивный двигатель содержит воздухозаборник, корпус, по меньшей мере, один компрессор, камеру сгорания с топливным коллектором, установленную за компрессором и соединенную с ним воздушным трактом, по меньшей мере, одну турбину и, по меньшей мере, один вал, соединяющий компрессор и турбину, реактивное сопло и систему подачи водорода к камере сгорания. Корпус камеры сгорания выполнен заодно с теплообменником кольцевой формы с входным и выходным коллекторами. Выходной коллектор соединен с топливным коллектором. Изобретение направлено на повышение энергетических возможностей газотурбинного двигателя, работающего на водороде, повышение степени сжатия компрессора, увеличение силы тяги двигателя и улучшение его удельных характеристик. 3 з.п. ф-лы, 2 ил.

Группа изобретений относится к боевой авиации, на борту которой устанавливается лазерное оружие. В способе работы авиационного газотурбинного двигателя, включающем процесс сжатия воздуха в компрессорах, подвод тепла в камере сгорания, расширение газового потока для получения сверхзвуковой скорости осуществляют через бинарную систему, состоящую из турбины низкого давления, лопатки которой выполнены в виде сопел Лаваля, и установленного за ней кольцевой неподвижной закритической расширяющейся части сопла Лаваля. В авиационном газотурбинном двигателе рабочие лопатки турбины низкого давления выполнены в виде сопел Лаваля, создающих на выходе турбины сверхзвуковой газовый поток с углом выхода, близким к 90 градусов. С минимальным зазором за турбиной низкого давления установлена неподвижная часть, за срезом которой расположен проточный оптический резонатор с зеркальной системой фокусировки и вывода лазерного луча на систему прицеливания. Достигается увеличение секундного расхода газа, выходящего из оптического резонатора, приводящего к увеличению мощности лазера и тяги двигателя, а также повышение надежности лазера. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области авиации, в частности к конструкциям устройств управления шагом лопастей воздушного винта. Устройство подачи текучей среды (100) в гидравлический цилиндр управления ориентацией лопастей вентилятора турбовинтового двигателя с двойным воздушным винтом содержит дозатор текучей среды (120), жестко соединенный с ротором турбовинтового двигателя. Дозатор имеет цилиндрическую часть (121), содержащую две канавки циркуляции текучей среды (123), каждая из которых содержит выходное отверстие (125). Опора подвода текучей среды (110) жестко соединена с неподвижной частью турбовинтового двигателя. Опора содержит цилиндрическую часть (111) с двумя отдельными проходами (113), открытыми к трубам подвода текучей среды (44), каждый из которых радиально выходит в одну из канавок дозатора. Ванночка (130) жестко соединена с дозатором и содержит цилиндрическую часть (131) с двумя каналами (132). В каждый канал подается текучая среда через одно из выходных отверстий дозатора, причем каждый канал выходит к камере силового цилиндра управления. Достигается снижение габаритов механизма управления ориентацией лопастей. 2 н. и 8 з.п. ф-лы, 3 ил.

Лопасть (l1) предназначена для установки на втулке (12, 13) винта турбомашины таким образом, что пустое пространство (18, I8A, 18B) предусмотрено между основанием (14A) лопасти (14) и стороной втулки (12, 13), противолежащей основанию (14A). Лопасть (l1) содержит убирающиеся средства закрытия (16, 17), которые могут занимать выдвинутое положение, в котором убирающиеся средства закрытия закрывают пустое пространство (18, 18A, 18B), и убранное крайнее положение, в котором убирающиеся средства удерживаются за пределами пустого пространства. Винт содержит лопасти. Турбомашина содержит винт. Группа изобретений направлена на улучшение КПД. 3 н. и 10 з.п. ф-лы, 3 ил.

Разделитель потока газа, способный разделять поток газа на первый поток и второй поток, содержит переднюю кромку разделителя и устройство для предотвращения обледенения передней кромки. Устройство для предотвращения обледенения содержит, по меньшей мере, металлическую лопатку, которая находится в тепловом контакте с передней кромкой и проходит от передней кромки к заднему краю разделителя на некотором расстоянии от передней кромки для того, чтобы находиться в тепловом контакте с источником тепла (24), расположенным на некотором расстоянии от передней кромки. Изобретение направлено на создание простого экономичного и надежного решения проблемы обледенения переднего (входного) края разделителя газового потока. 2 н. и 13 з.п. ф-лы, 5 ил.
Наверх