Электроэнергетическая установка

Изобретение относится к области электротехники и может быть использовано для электрозапуска и самообеспечения электроэнергией газоперекачивающих агрегатов турбокомпрессорных станций. Техническим результатом является возможность получения большего количества электроэнергии и упрощение электроэнергетических узлов за счет их длительной работы без использования масляных систем. Электроэнергетическая установка содержит газотурбинный двигатель и соединенный с ним через трансмиссию компрессор, преобразователь, составленный из мостового выпрямителя и трехфазного инвертора на полупроводниковых ключах, управляемых от программируемой схемы. В зависимости от режима работы установки «генерирование» - «пуск» выход инвертора через контактор присоединяется или к стартовому двигателю, или к нагрузке через фильтр. Установка снабжена двумя электрическими машинами. Стартовый двигатель связан механически с газотурбинным двигателем, а генератор жестко закреплен на валу компрессора и не требует собственных опор, причем каждая фаза его стартера соединена с выходной клеммой дополнительного контактора, соединенного с входом выпрямителя, который через пусковой контактор может быть подключен к электросети, а через упомянутый дополнительный контактор - с нагрузкой. Это позволяет увеличить срок службы, не обращаясь к сложным системам маслообеспечения, и количество получаемой электроэнергии. 1 ил.

 

Изобретение относится к области электротехники и может быть использовано как автономный источник электроэнергии и электрозапускающее устройство газоперекачивающих агрегатов, в состав которых входит газотурбинный двигатель и связанный с ним специальной трансмиссией компрессор.

Известна электроэнергетическая установка [1], в которой один и тот же преобразователь, составленный из мостового выпрямителя и инвертора, обеспечивает как электрозапуск газотурбинного двигателя, так и снабжение электроэнергией аппаратуры газоперекачивающей компрессорной станции.

Усовершенствованный вариант электроэнергетической установки известен из патента [2], в котором обеспечиваются режимы прокрутки и регламентных работ на газотурбинном двигателе и компрессоре при сохранении достоинств первого варианта.

Однако известные электроэнергетические установки не во всем устраивают практику. Во-первых, отбор мощности от имеющихся коробок приводов газотурбинных двигателей ограничен мощностью 100÷150 кВт. Во-вторых, для согласования срока службы стартер-генератора и газотурбинного двигателя необходимо снабжать опоры стартер-генератора системой подачи масла, что резко усложняет конструкцию.

Предлагаемая электрическая установка решает указанные проблемы. Это достигается тем, что электроэнергетическая установка газоперекачивающего агрегата, составленного из газотурбинного двигателя и связанного с ним через трансмиссию компрессора, повышающего давление в газопроводе, которая работает как электрогенерирующая система и как система электрозапуска агрегата, с использованием трехфазного мостового выпрямителя и параллельно включенного с ним по шинам постоянного тока трехфазного мостового инвертора на полупроводниковых ключах, управляемых от программируемой схемы, с присоединением выхода упомянутого инвертора через контактор, имеющим в каждой фазе по одной входной клемме, соединенной с выходом инвертора, и по двум выходным клеммам, первая из которых соединена с одной из обмоток статора электрической машины, ротор которой механически соединен с коробкой приводов газотурбинного двигателя, а вторая - непосредственно или через фильтр к одной из фаз нагрузки с использованием общепромышленной сети, или любого иного источника электроэнергии, подключаемого на вход трехфазного мостового выпрямителя через пусковой контактор и использованием дополнительного контактора, входная клемма каждой фазы которого соединена с одной из входных фаз указанного мостового выпрямителя, а первая из выходных клемм присоединена непосредственно к одной из фаз нагрузки, причем установка снабжена второй электрической машиной с ротором на постоянных магнитах, который жестко закреплен с валом упомянутого компрессора, а каждая фаза его статора соединена со второй выходной клеммой соответствующей фазы дополнительного контактора.

В результате для генератора не требуется опор, так как используются опоры компрессора, а поскольку валом отбора мощности, по сути, является вал компрессора мощностью более 10 МГВт, то снимаются ограничения по мощности генерируемой электроэнергии. При этом достоинства прототипов сохраняются.

На чертеже представлена схема предлагаемой установки.

Установка содержит газотурбинный двигатель с коробкой приводов 1, соединенный механически с электродвигателем 2, через обгонную муфту 9. Газотурбинный двигатель через трансмиссию приводит во вращение компрессор 3, вал которого приводит во вращение ротор генератора 4.

Установка содержит мостовой выпрямитель 5 и мостовой инвертор 6, который управляется от программируемой схемы 7, где x; y; z - кнопки программирования.

На выходе инвертора установлен контактор 13, имеющим в каждой фазе по одной входной и двум выходным клеммам. Кроме этого, в схеме имеется дополнительный контактор 14, аналогичный контактору 13. Контактор 8 используется как пусковой контактор. Блок 10 обеспечивает питание схемы управления 7 и подключен к фазам нагрузки Aн, Bн, Cн. Напряжение от инвертора 6 поступает к нагрузкам 11 через фильтр 12.

Установка работает следующим образом. В стационарном режиме газотурбинный двигатель 1 вращает компрессор 3, который, в свою очередь, вращает ротор генератора 4. Напряжение с обмоток его статора через контактор 14 поступает на вход выпрямителя 5, который питает шины постоянного тока инвертора 6.

Программируемое устройство 7 обеспечивает управление полупроводниковыми ключами инвертора 6 и на его выходе формируется (например, за счет высокочастотной модуляции) напряжение, которое через контактор 13 поступает на фильтр 12, при этом система управления обеспечивает стабилизированную частоту и напряжение, так что нагрузка 11 питает трехфазным синусоидальным напряжением 220/380 В 50 Гц.

При остановке газотурбинного двигателя останавливается компрессор 3 и переключаются контакторы 13 и 14.

В систему управления 7 вводится программа пуска или прокрутки, а за счет замыкания пускового контактора 8 обеспечивается питание нагрузки 11 и выпрямителя 5 от сети О, Aс, Bс, Cс.

При программе пуска инвертор 6 управляется по вектору поля, и электродвигатель 2 начинает раскручивать газотурбинный двигатель по заданной программе до оборотов «поджига», после чего некоторое время продолжается сопровождение. Когда турбина обгоняет по оборотам электродвигатель, срабатывает обгонная муфта 9, «выключается» инвертор 6 и электродвигатель 2 останавливается, тогда как ротор генератора 4 выходит на номинальные обороты. Пусковой контактор 8 выключается. Контакторы 13 и 14 переводятся в исходное состояние, как это изображено на чертеже. Система управления 7 переводится в режим «генерирование».

Нагрузка 11 снабжается электроэнергией через контактор 13. Электроэнергетическая установка переходит в режим генерирования электроэнергии.

В режиме «прокрутки» процессы аналогичны пусковому режиму, за исключением того, что при заданной частоте работы двигателя 2 прекращают изменение частоты или изменяют ее по заданному закону в соответствии с программой, заложенной в системе управления 7.

В результате нагрузка снабжается электроэнергией в любом режиме.

Масляной системы для опор не требуется, так как стартер работает кратковременно, а генератор использует опоры компрессора. В результате электроэнергетическая установка при сравнимых затратах обеспечивает получение в 2-4 раза большего количества электроэнергии.

Источники информации

1. RU №2363090 C1 H02P 9/04 от 27.07.2009 г. Бюл. №21.

2. RU №92750 U1 H02P 9/04 от 27.03.2010 г. Бюл. №9.

Электроэнергетическая установка газоперекачивающего агрегата, составленного из газотурбинного двигателя и связанного с ним через трансмиссию компрессора, повышающего давление в газопроводе, которая работает как электрогенерирующая система и как система электрозапуска агрегата с использованием трехфазного мостового выпрямителя и параллельно включенного с ним по шинам постоянного тока трехфазного мостового инвертора на полупроводниковых ключах, управляемых от программируемой схемы, с присоединением выхода упомянутого инвертора через контактор, имеющий в каждой фазе по одной входной клемме, соединенной с выходом инвертора, и по двум выходным клеммам, первая из которых соединена с одной из обмоток статора электрической машины, ротор которой механически соединен с коробкой приводов газотурбинного двигателя, а вторая непосредственно или через фильтр - к одной из фаз нагрузки, с использованием общепромышленной сети или любого иного источника электроэнергии, подключаемого на вход трехфазного мостового выпрямителя через пусковой контактор, и использованием дополнительного контактора, входная клемма каждой фазы которого соединена с одной из входных фаз указанного мостового выпрямителя, а первая из выходных клемм присоединена непосредственно к одной из фаз нагрузки, отличающаяся тем, что установка снабжена второй электрической машиной с ротором на постоянных магнитах, который жестко закреплен с валом упомянутого компрессора, а каждая фаза его статора соединена со второй выходной клеммой соответствующей фазы дополнительного контактора.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано в источниках электроэнергии для самообеспечения промышленных объектов, например компрессорных станций перекачки газа.

Изобретение относится к инверторному генератору, в частности к инверторному генератору, оснащенному блоком генератора с приводом от двигателя внутреннего сгорания, в котором частота вращения двигателя является в зависимости от нагрузки.

Изобретение относится к области электротехники и может быть использовано для электропитания и управления электрическим оборудованием летательного аппарата. .

Изобретение относится к инверторному генератору, в частности к инверторному генератору, оснащенному блоком генератора с приводом двигателя внутреннего сгорания и выполненному с возможностью ограничения сверхтока.

Изобретение относится к электроэнергетике и может быть использовано в системах противоаварийного управления энергоблоками теплоэлектростанций и теплоэлектроцентралей.

Изобретение относится к области электротехники и может быть использовано при проектировании электроэнергетических установок, автономно обеспечивающих электроэнергией нагрузки.

Изобретение относится к системам управления турбогенераторными одновальными установками, используемыми для производства тепловой и электрической энергии, а именно турбогенераторными одновальными установками с тиристорным преобразователем частоты (ТПЧ).

Изобретение относится к электротехнике. .

Изобретение относится к энергетике, к управлению торможением ветровой турбины

Изобретение относится к инверторному генератору, в частности к инверторному генератору, оснащенному блоком генератора с приводом двигателя внутреннего сгорания и выполненному с возможностью устранения из выходного значения переменного тока нелинейного гармонического искажения до предельно допустимой степени

Изобретение относится к области электротехники и может быть использовано для самообеспечения электроэнергией газоперекачивающей станции, составленной из газотурбинного двигателя и связанного с ним компрессора, повышающего давление в газопроводе

Изобретение относится к области электротехники, обеспечивающей электроснабжение автономных объектов

Изобретение относится к области электротехники и может быть использовано для управления резервным электрическим генератором постоянной частоты с изменяемым числом оборотов. Технический результат - обеспечение максимального коэффициента использования топлива двигателя и минимума шума, связанного с работой генератора. В способе управления электрическим генератором с приводом от двигателя генератор вырабатывает выходное напряжение с некоторой частотой, а двигатель работает с рабочим числом оборотов. Способ включает подключение генератора к нагрузке и изменение рабочего числа оборотов двигателя для оптимизации расхода топлива в зависимости от нагрузки. Затем частоту выходного напряжения изменяют до заданного уровня. 3 н.и 14 з.п. ф-лы, 1 ил.

Изобретения относятся к электротехнике, а именно к средствам защиты ветроэнергетических установок при значительном увеличении скорости ветра. Технический результат заключается в обеспечении возможности полной остановки ветроколеса при его торможении. Устройство для реализации способа торможения ветроколеса ветроэнергетической установки, содержащей электрический генератор, включает датчик оборотов вала генератора, контроллер, переключающее устройство и аккумуляторную батарею. Переключающее устройство выполнено в виде двунаправленного транзисторного ключа, содержащего соединенные между собой эмиттерами первый и второй транзисторы p-n-p-n структуры и два диода, отрицательные электроды которых соединены соответственно с коллекторами первого и второго транзисторов, а положительные электроды соединены между собой и с эмиттерами транзисторов. Двунаправленный транзисторный ключ включен коллекторами транзисторов между одним концом обмотки статора генератора и положительным полюсом аккумуляторной батареи, отрицательный полюс которой соединен с другим концом обмотки статора генератора. Датчик оборотов вала генератора подключен к первому входу контроллера, первый и второй выходы которого подключены к затворам соответственно первого и второго транзисторов, а третий выход контроллера соединен с эмиттерами транзисторов. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области электротехники и может быть использовано для электростартерного запуска маршевых авиадвигателей. Технический результат - обеспечение высокой энергетики и обеспечение раскручивания авиадвигателя до оборотов, соответствующих или превышающих синхронную частоту стартер-генератора. В способе запуска авиационного двигателя период его запуска делят на два интервала времени. В течение первого интервала времени запуск осуществляют путем формирования синхронной последовательности полуволн напряжения от одноименных фаз независимого источника переменного тока до достижения 10÷20% номинальной частоты стартер-генератора. В течение второго интервала времени запуска в моменты превышения величины питающего напряжения над величиной противоЭДС стартер-генератора и преимущественно в зоне ее амплитуды формируют асинхронную последовательность дискретных импульсов тока. Амплитуда этих импульсов не должна превышать предельно допустимого значения тока стартер-генератора, а число импульсов определяется в зависимости от заданной скорости разгона ротора авиационного двигателя. 1 ил.

Изобретение относится к области электротехники и может быть использовано в системах электроснабжения автономных объектов. Техническим результатом является повышение надежности работы. Устройство электропитания постоянным током автономного транспортного судна содержит газотурбинный двигатель, электромеханическую передачу, включающую дифференциальный мультипликатор, электромагнитный тормоз-расцепитель, генератор, бесконтактный электродвигатель постоянного тока, блок коммутации, бортовые потребители электроэнергии постоянного тока, блок управления блоком коммутации и электродвигателя постоянного тока, управляемый выпрямитель. Указанные элементы соединены между собой так, как указано в материалах заявки. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники и может быть использовано в стартер-генераторе низкоскоростного роторно-лопастного двигателя в составе автономной кооперационной системы энергоснабжения, ветроэнергетических и других установок на основе альтернативных источников энергии. Техническим результатом является обеспечение работы установки на базе роторно-лопастного двигателя с внешним подводом теплоты с высокими показателями энергетической эффективности в трех режимах с использованием типовых вентильных преобразователей и общепромышленного вентильного двигателя и повышение эффективности системы управления. Вентильный преобразователь напряжения (3) выполнен на активных полупроводниковых элементах с двусторонней проводимостью. В систему добавлены аккумуляторная батарея (9) и вторичные источники питания (10). Управление потоком электрической энергии осуществляется с использованием обратной связи по напряжению или току звена постоянного напряжения с учетом скорости вращения синхронной машины (2) и изменения нагрузки переменного напряжения. Система управления мультипликатором (7) связана с главной системой управления (6) роторно-лопастного двигателя (1). 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к электротехнике, а именно к способу и устройству управления генератором, приводимым двигателем внутреннего сгорания, установленным с возможностью работы в параллель. Способ включает в себя: обнаружение контроллером каждого генератора при каждом запуске двигателя внутреннего сгорания наличия выходного напряжения, при наличии - генератор становится ведомым и синхронизирует фазы выходного напряжения с фазой обнаруженного напряжения, как опорной фазы, при отсутствии напряжения - генератор действует как задающий генератор; определение соответствующей активной мощности и эффективных значений выходных токов; определение соответствующих амплитуд выходного напряжения в падающих характеристических кривых согласно эффективным значениям выходных токов, и определение внутренних углов коэффициента мощности согласно соответствующей активной мощности; управление каждым генератором для достижения соответствующих амплитуд выходного напряжения и внутренних углов коэффициента мощности. Технический результат состоит в реализации энергетического баланса между параллельно работающими генераторами. 4 н. и 17 з.п. ф-лы, 11 ил.
Наверх