Способ получения циклооктанола



Способ получения циклооктанола
Способ получения циклооктанола
Способ получения циклооктанола
Способ получения циклооктанола
Способ получения циклооктанола
Способ получения циклооктанола

 


Владельцы патента RU 2420508:

Учреждение Российской академии наук Институт нефтехимии и катализа РАН (RU)

Настоящее изобретение относится к способу получения циклооктанола, который является исходным сырьем для синтеза циклооктанона, применяемого в фармацевтической и парфюмерной промышленности, а также для производства пробковой кислоты. Способ заключается в каталитической гидратации циклооктена в среде CCl4 в присутствии Cr(асас)3 и CuCl2 при температуре 150°С в течение 6-12 ч при мольном соотношении [Cr(асас)3]:[CuCl2]:[C8H14]:[Н2О]:[CCl4]=1:1:100: (2000-2500): 100. Предлагаемый способ позволяет получить целевой продукт с высоким выходом при использовании доступного и дешевого сырья. 1 табл.

 

Изобретение относится к области органической химии, в частности к способу получения циклооктанола.

Циклооктанол является исходным сырьем для синтеза циклооктанона, применяемого для получения пробковой кислоты (Mitsui О., Fukuoka Yo., Пат. США №4528409, опубл. 09.07.1985 [1]). Кроме того, циклооктанол используется в фармацевтической и парфюмерной промышленности (Kaufhold M., Köhler G., Paulczynski R., Beuth M., Евр. пат. №1085007, опубл. 21.03.2001 [2]).

В лабораторной практике циклооктанол получают β',β-анионным элиминированем Li-, Mg- и Al-енолятов изобутиратов циклооктанола. Выходы циклооктанола зависят от природы металла и применяемого растворителя, и они более высокие в менее полярной среде (Соrinnе A., Jean-Pierre В., Jean-Francois В. Tetrahedron, V. 42, №20, 5581-5590(1986) [3]). Кроме того, для синтеза циклооктанола применяют фотоокисление циклооктена с помощью Н2O2 в ацетонитриле (ртутная лампа, 200w, выход 95%) (Sonawane H.R., Nanjundiah B.S., Kelkar R.G. Tetrahedron, V. 42, №24, 6673-6682(1986) [4]). Циклооктанол можно также получить, электрохимически анодным окислением циклооктена (Shono Т., Chuankamnerdkam M., Maekawa H., Ishifune M., Kashimura Sh. Synthesis, №9, 895-897 (1994) [5]).

Один из способов получения циклооктанола основан на взаимодействии циклооктена (1) с ацетатом ртути, последующем омылении и гидрировании цис-циклооктен-1,2-ола-3 (3). Стадию гидрирования можно осуществить до омыления ацетоксициклооктана (4) в циклооктанол (6) (Требоганов А.Д., Астахова Р.С., Краевский А.А., Преображенский Н.А. ЖОрХ, Т. 2., №12., 2178-2181(1966) [6]). Смесь 20 г циклооктена (1) и 33.4 г ацетата ртути нагревают 2 часа при 145-150°С и перемешивании. Реакционную массу фильтруют, отгоняют непрореагировавший циклооктен, а остаток перегоняют. Выход цис-3-ацетоксициклооктена-1,2 (2) составляет 30%. К раствору (2) в метаноле за 10 мин приливают КОН в метаноле (5 мин). Реакционную массу нагревают при кипении, охлаждают, разбавляют водой и вещество извлекают эфиром. Соединенные экстракты промывают водой и сушат сернокислым натрием. Выход цис-циклооктен-1,2-ола-3 (3) составляет 92.9%. Затем (3), растворенный в метаноле, гидрируют в присутствии PdCl2/C (1:1). Катализатор отделяют, растворитель удаляют, остаток перегоняют. Общий выход циклооктанола (6) составляет 25%. Ацетоксициклооктан (4) получают гидрированием 3-ацетоксициклооктена-1 в метаноле в течение 25 мин в присутствии PdCl2/C (1:1). Катализатор отделяют, растворитель удаляют, остаток перегоняют. Образующийся ацетоксициклооктан (4) омыляют с помощью КОН в метаноле при 50°С в течение 10 мин. Циклооктанол (6) извлекают эфиром. Органический экстракт промывают водой, сушат сернокислым натрием, растворитель отгоняют, остаток перегоняют. Суммарный выход спирта (6) составил 24%.

Существенные недостатки метода:

1. Использование ядовитого ацетатата ртути.

2. Значительные трудности при выделении 3-ацетоксициклооктена-1 из-за неполной конверсии циклооктена (30%)и использования большого количества Hg(CH3CO2)2.

3. Образование большого количества неорганических отходов и сточных вод вследствие применения Hg(CH3CO2)2 и КОН.

4. Взрывоопасность процесса гидрирования.

5. Необходимость использования токсичного растворителя -метанола.

6. Низкий выход целевого продукта.

Циклооктанол можно получить в 2 стадии из циклооктена через промежуточный цис-эпоксициклооктан (5) [6]. При эпоксидировании 22 г циклооктена (1) с помощью 30.5 г 33% Н2О2 и 5 г муравьиной кислоты при перемешивании в течение 4 ч при 8-10°С и 20 ч при 20-25°С образуется цис-1,2-эпоксициклооктан (5). Эпоксид (5) экстрагируют хлороформом, промывают водой, насыщенным раствором Na2S2O3 и 10% раствором К2СО3, затем сушат Na2SO4. Растворитель и непрореагировавший циклооктен отгоняют, остаток перегоняют. К суспензии LiAlH4 в ТГФ при интенсивном перемешивании приливают раствор цис-1,2-эпоксициклооктана (5) в ТГФ. Реакционную массу перемешивают при кипении в течение 20 ч, затем, постепенно отгоняя ТГФ, доводят температуру до 120°С и перемешивают еще 7 ч. Реакционную массу охлаждают, приливают воду и тетрагидрофуран, затем за 15 мин - 30 мл 10% H2SO4. Целевой продукт извлекают диэтиловым эфиром. Эфирный остаток промывают водой, сушат. Растворитель отгоняют, а остаток хроматографируют на колонке с Al2O3. Суммарный выход циклооктанола составляет 76%.

Существенные недостатки метода:

1. Использование большого количества взрывоопасного окислителя (H2O2).

2. Пожароопасность алюмогидрида лития.

3. Необходимость использования абсолютно сухих растворителей.

4. Необходимость утилизации продуктов гидролиза LiAlH4 (LiOH и Al(ОН)3).

5. Трудность выделения целевого продукта.

Циклооктанол можно синтезировать восстановлением 1,2-эпокси-5-циклооктена (8) с помощью катализатора - никеля-Ренея с добавкой титана при давлении водорода 60 атм (Симанов И.А., Круков С.И., Фарберов М.И., Кошель Г.И., Глазырина И.Г. Нефтехимия, Т. 25, №1, 141-145(1975) [7]). В результате гидрирования 1,2-эпокси-5-циклооктена при 100°С, давлении водорода 60 атм в течение 3 ч образуется циклооктанол (выход 86%) при полной конверсии 1,2-эпокси-5-циклооктена.

Существенные недостатки метода:

1. Труднодоступность исходного реагента.

2. Взрыво- и пожароопасность процесса гидрирования под

высоким давлением водорода.

Циклооктанол (6) из циклооктена (1) получают в две стадии через циклооктилформиат (7) (Kaufhold M., Köhler G., Paulczynski R., Beuth M., Евр. пат., №1085007, опубл. 21.03.2001 [2]). На I стадии при взаимодействии 0.2 кмоль циклооктена (1) и 0.6 кмоль муравьиной кислоты при интенсивном перемешивании в течение 6 ч при 80°С образуется циклооктилформиат (7). Затем циклооктилформиат омыляют, используя метанол и 30% метилат натрия при 53°С в течение 6 ч. Суммарный выход циклооктанола (6) составляет 25%.

Существенные недостатки метода:

1. Многостадийность процесса.

2. Использование большого избытка муравьиной кислоты.

3. Необходимость использования ядовитого метанола в качестве растворителя.

4. Использование большого количества метилата натрия, который синтезируется реакцией металлического натрия с обезвоженным метанолом.

5. Образование неорганических отходов и сточных вод, которые необходимо утилизировать.

6. Трудность выделения и низкий выход целевого продукта.

Циклооктанол (6) получен гидратацией циклооктена (1) в присутствии n-толуолсульфокислоты и фосфорномолибденовой кислоты как катализатора [1]. Реакцию проводили в стеклянном автоклаве при перемешивании при 100°С в течение 3 ч. Конверсия (1) - 45%, а общий выход циклооктанола не превышает 40%.

На основании сходства по трем признакам (исходный реагент - циклооктен, использование воды и катализатора, образование в результате реакции циклооктанола) за прототип взят метод гидратации циклооктена в присутствии катализаторов: n-толуолсульфокислоты и фосфорномолибденовой кислоты как смеси двух катализаторов [1].

Прототип имеет следующие недостатки:

1. Необходимость использования коррозионно-стойкого оборудования.

2. Низкий выход циклооктанола (40%).

3. Использование большого количества катализатора (мольное соотношение [циклооктен]:[n-толуолсульфокислота]=1:1.86).

4. Образование большого количества отходов и сточных вод,

которые необходимо утилизировать.

Авторами предлагается способ получения циклооктанола, не имеющий указанных недостатков.

Сущность способа заключается в гидратации циклооктена в среде CCl4 под действием Cr(асас)3-CuCl2 при температуре 150°С в течение 6-12 ч при мольном соотношении [Cr(асас)3]:[CuCl2]:[C8H14]:[H2O]:[CCl4]=1:1:100:(2000÷2500):100

В оптимальных условиях выход циклооктанола достигает 95%.

Существенные отличия предлагаемого способа от прототипа:

1. Для получения циклооктанола гидратацией циклооктена используется система Cr(асас)3-CuCl2 в присутствии CCl4, который претерпевает частичный гидролиз с выделением хлороводорода HCl, являющегося совместно с комплексами Cr и Cu катализатором присоединения Н2О к кратной связи.

Преимущества предлагаемого метода:

1. Высокий выход целевого продукта - циклооктанола.

2. Доступность и дешевизна катализатора.

3. Доступность реагентов (вода и CCl4), необходимых для проведения реакции гидратации циклооктена.

4. Одностадийность процесса.

5. Удешевление себестоимости и упрощение технологии в целом за счет уменьшения энерго- и трудозатрат.

Способ поясняется примерами:

ПРИМЕР 1. В микроавтоклав из нержавеющей стали (V=17 мл) или стеклянную ампулу (V=20 мл) (результаты параллельных опытов не отличаются) помещали 0.1 ммоль Cr(асас)3, 0.1 ммоль CuCl2, 10 ммоль циклооктена, 200 ммоль воды и 10 ммоль четыреххлористого углерода (CCl4), автоклав закрывали (ампулу запаивали) и нагревали при 150°С в течение 12 ч при постоянном перемешивании. После окончания реакции микроавтоклав (ампулу) охлаждали до комнатной температуры, вскрывали, органический слой отделяли, водный экстрагировали диэтиловым эфиром (5 мл × 3), экстракты объединяли с основным слоем, фильтровали через слой Al2O3 (II степени активности), растворитель отгоняли, остаток перегоняли в вакууме. Выход циклооктанола (6) 95%, Ткип 104-105°С/15 Торр. ИК-спектр (υ, см-1): 1150, 3600 (ОН). Спектр ЯМР 13С (CDCl3, δ, м.д.): 72.03(С1), 34.80(C2, C8), 22.95(С3, С7), 27.64 (С4, С6), 25.48 (С5). Масс-спектр, m/z (Iотн, %) [M]+ (отсут.), 29(19), 31(8), 39(15), 41(45), 42(19), 43(23), 44(24), 45(7), 54(23), 55(27), 56(20), 57(100), 66(7), 67(41), 68(43), 69(20), 81(34), 82(38), 95(12), 110(10). Найдено, %: С 74.63; Н 12.44. C8H16O. Вычислено, %: С 74.94; Н 12.58; Cl 12.48.

Другие примеры, подтверждающие способ, приведены в таблице.

Результаты опытов по синтезу циклооктанола гидратацией циклооктена под действием каталитической системы Cr(асас)3-CuCl2 в присутствии CCl4
№ п/п Мольное соотношение [Cr(асас)3]:[CuCl2]:[C8H14]:[H2O]:[CCl4] Температура, °С Продолжительность, ч Выход циклооктанола, %
1. 1:1:100:2000:100 150 6 45
2. 1:1:100:2000:100 -//- 12 95
3. 1:1:100:2500:100 -//- 6 68
4. 1:1:100:2000:100 -//- 8 62
5. -//- -//- 10 87

Способ получения циклооктанола формулы

каталитической гидратацией циклооктена, отличающийся тем, что гидратацию проводят в среде CCl4 в присутствии Cr(асас)3 и CuCl2, при температуре 150°С в течение 6-12 ч при мольном соотношении [Cr(асас)3]:[CuCl2]:[C8H14]:[Н2О]:[CCl4]=1:1:100: (2000÷2500): 100.



 

Похожие патенты:

Изобретение относится к смесям душистых соединений, выбранных из смеси соединений (5a-d), (6a-d), (6a'-6d'), (7a-d) и (7a'-7d'), к способу получения данных смесей, к душистой, парфюмерной и косметической композициям, а также продукту бытовой химии на их основе и к применению данных смесей или душистой композиции на их основе в качестве душистого агента, агента, маскирующего или нейтрализующего запах.

Изобретение относится к каталитическому окислению насыщенных углеводородов кислородосодержащим газом. .

Изобретение относится к алициклическим спиртам, в частности к получению циклододеканола - полупродукта для синтеза 1,10-декандикарбоновой кислоты, додекаметилендиамина и а) -додекалактама - мономеров для производства новых полиамидных волокон, пластмасс и пластификаторов .

Изобретение относится к способу получения третичного бутанола, который используется в качестве растворителя и полупродукта для органического синтеза. .

Изобретение относится к способу получения изобутена, изопрена и, возможно, трет-бутанола из изобутенсодержащей(их) С4-фракции(й), включающему гидратацию изобутена в С4-фракции(ях), отгонку непрореагировавших С4 -углеводородов от трет-бутанола, дегидратацию трет-бутанола, контактирование изобутенсодержащей С4-фракции и возможно трет-бутанола с водным(и) раствором(ами) формальдегида и кислоты, отгонку как минимум оставшихся С4-углеводородов и разложение полупродуктов при повышенной температуре с образованием и последующим выделением изопрена и изобутена, характеризующемуся тем, что исходную(ые) изобутенсодержащую(ие) фракцию(и) как минимум частично подвергают гидратации на сульфокатионитном катализаторе в узле гидратации при умеренной подаче в него воды в количестве, компенсирующем ее расходование на реакцию с изобутеном и вывод в составе органического слоя, содержащего преимущественно смесь непрореагировавших С4-углеводородов и образующегося трет-бутанола при конверсии изобутена от 40 до 80%, как минимум из части указанного органического слоя выделяют ректификацией поток, содержащий преимущественно трет-бутанол, и поток непрореагировавших С4-углеводородов, содержащий от 10 до 40% изобутена, который контактируют с водным(и) раствором(ами) формальдегида и кислоты и образующиеся полупродукты после отгонки как минимум оставшихся С4-углеводородов подвергают жидкофазному или газофазному катализируемому разложению при повышенной температуре с образованием изопрена, изобутена и побочных продуктов, а указанный поток, содержащий преимущественно трет-бутанол, как минимум частично подают в зону разложения полупродуктов непосредственно и/или после контактирования как минимум с водным(и) раствором(ами) формальдегида и кислоты в дополнительной реакционной зоне, а остальную часть указанного потока, содержащего преимущественно трет-бутанол, дегидратируют с получением изобутена.

Изобретение относится к способу переработки углекарбонатного минерального сырья, включающему обжиг известняка в реакторе с получением окиси кальция, производство карбида кальция реакцией части окиси кальция, полученной при обжиге известняка, с углеродом, контактирование части объема полученного карбида кальция с водой с получением ацетилена и едкого кальция, контактирование газообразных отходов процесса обжига известняка с водой для получения угольной кислоты, при этом для обжига известняка используют тепло, получаемое сжиганием части объема ацетилена, получаемого из части объема карбида кальция.

Изобретение относится к получению третичного бутилового спирта, который используется в качестве растворителей и полупродуктов для органического синтеза, в частности для получения чистого изобутилена.

Изобретение относится к получению третичного бутилового спирта, который используется в качестве растворителей и полупродуктов для органического синтеза, в частности для получения чистого изобутилена.

Изобретение относится к получению третичного бутилового спирта, который используется в качестве растворителей и полупродуктов для органического синтеза, в частности для получения чистого изобутилена.

Изобретение относится к усовершенствованному способу получения спиртов, например, таких как трет-пентанол или трет-бутанол, жидкофазной гидратацией алкенов, содержащихся в исходном углеводородном сырье, в присутствии твердого высококислотного катализатора при повышенной температуре в две последовательные стадии с последующим отделением непрореагировавших углеводородов из реакционной смеси, выводимой со второй стадии и содержащей образующий(е)ся спирт(ы), предпочтительно путем ректификации, при котором на первой стадии в реакционной(ых) зоне(ах) поддерживают две жидкие фазы при существенном массовом избытке фазы, содержащей преимущественно воду, измельченном состоянии фазы, содержащей преимущественно углеводород(ы), и более высокой температуре, выводят только или в основном жидкий поток, содержащий преимущественно углеводород(ы), образовавший(е)ся спирт(ы) и растворенную воду, и, возможно, жидкий поток, содержащий преимущественно воду и спирт(ы), который(е) на второй стадии через распределительное(ые) устройство(а) подают в одну или несколько последовательных реакционных зон с раздельным поступлением воды в одну или несколько реакционных зон, и жидкость в реакционных зонах второй стадии при меньшей температуре поддерживают в гомогенном или гетерогенном состоянии, при котором фаза, содержащая преимущественно воду и спирт(ы), находится в измельченном состоянии, и ее массовое количество не превосходит 25% от массового количества фазы, содержащей преимущественно углеводороды и спирт(ы).

Изобретение относится к области комплексной переработки углеводородных смесей, содержащих изо- и нормальные бутены, в продукты химического превращения изо- и н-бутенов.
Изобретение относится к способу непрерывной гидратации этилена, пропилена или их смеси с водой в паровой фазе до соответствующих спиртов в присутствии соли гетерополикислоты в качестве катализатора при молярном соотношении воды к олефину, проходящих через реактор, в пределах 0,1 - 3,0, среднечасовой скорости подачи газа вода/олефин через каталитическую систему 0,010 - 0,25 г/мин/см3, концентрации гетерополикислоты 5 - 60 мас.% от общей массы каталитической системы, при температуре 150 - 350oС и давлении, колеблющемся от 1000 до 25000 кПа.

Изобретение относится к способу непрерывного получения изопропилового спирта, применяемого в качестве сырья для получения перекиси водорода, ацетона, лекарственных препаратов и как растворитель в быту и технике.
Изобретение относится к способу получения третичного бутилового спирта, который используется в качестве полупродукта в органическом синтезе, в частности, для получения изобутилена и изопрена
Изобретение относится к способу получения третичного бутилового спирта, который используется в качестве полупродукта в органическом синтезе, в частности, для получения изобутилена и изопрена, применяемых в производстве бутилкаучука и изопренового каучука
Изобретение относится к способу получения третичного бутилового спирта - полупродукта в органическом синтезе и может найти применение при получении изобутилена и изопрена, применяемых в производстве бутилкаучука и изопренового каучука
Изобретение относится к способу получения третичного бутилового спирта, который используется в качестве полупродукта в органическом синтезе, в частности для получения изобутилена и изопрена, применяемых в производстве бутилкаучука и изопренового каучука
Изобретение относится к способу получения третичного бутилового спирта, который используется в качестве полупродукта в органическом синтезе, в частности для получения изобутилена и изопрена, применяемых к производстве бутилкаучука и изопренового каучука
Наверх