Способ получения несимметричных 1,2-дитиенилзамещенных циклопентенов



Способ получения несимметричных 1,2-дитиенилзамещенных циклопентенов
Способ получения несимметричных 1,2-дитиенилзамещенных циклопентенов
Способ получения несимметричных 1,2-дитиенилзамещенных циклопентенов
Способ получения несимметричных 1,2-дитиенилзамещенных циклопентенов
Способ получения несимметричных 1,2-дитиенилзамещенных циклопентенов
Способ получения несимметричных 1,2-дитиенилзамещенных циклопентенов
Способ получения несимметричных 1,2-дитиенилзамещенных циклопентенов
Способ получения несимметричных 1,2-дитиенилзамещенных циклопентенов
Способ получения несимметричных 1,2-дитиенилзамещенных циклопентенов
Способ получения несимметричных 1,2-дитиенилзамещенных циклопентенов
Способ получения несимметричных 1,2-дитиенилзамещенных циклопентенов
Способ получения несимметричных 1,2-дитиенилзамещенных циклопентенов
Способ получения несимметричных 1,2-дитиенилзамещенных циклопентенов
Способ получения несимметричных 1,2-дитиенилзамещенных циклопентенов
Способ получения несимметричных 1,2-дитиенилзамещенных циклопентенов
Способ получения несимметричных 1,2-дитиенилзамещенных циклопентенов
Способ получения несимметричных 1,2-дитиенилзамещенных циклопентенов
Способ получения несимметричных 1,2-дитиенилзамещенных циклопентенов

 


Владельцы патента RU 2421453:

Министерство промышленности и торговли Российской Федерации (Минпромторг России) (RU)

Изобретение относится к способу получения несимметричных фотохромных дитиенилзамещенных циклопентенов общей формулы I:

где R - хлор или алкил С1-С4, R1 - водород, галоген или алкил С1-С4, R2 и R3 - алкил С1-С4, заключающийся в том, что соответствующие производные тиофена общей формулы II:

где R и R2 имеют вышеуказанные значения, R4 - водород либо R2+R4 - -CH=CH-CR1=:CH-, где R1 имеет вышеуказанные значения, ацилируют глутаровым ангидридом в присутствии хлорида алюминия (III) в среде инертного органического растворителя, полученную при этом соответствующую кислоту переводят в хлорангидрид под действием оксалилхлорида и диметилформамида с последующим ацилированием полученного хлорангидрида соответствующим производным тиофена общей формулы II, где R, R1, R2 и R4 имеют вышеуказанные значения, в присутствии кислоты Льюиса и образующиеся при этом несимметричные 1,5-дикетоны подвергают внутримолекулярной циклизации на низковалентных титановых частицах при кипячении в среде инертного органического растворителя в присутствии пиридина. Технический результат - разработан способ получения новых фотохромных соединений, которые могут найти применение в качестве оптических переключателей в носителях информации большой емкости, используемых для записи, обработки и хранения данных.

 

Изобретение относится к области получения органических фотохромов, в частности новых неописанных в литературе несимметричных фотохромных дитиенилэтенов, содержащих в качестве мостикового звена циклопентен. Фотохромные продукты этого класса находят широкое практическое применение в качестве оптических переключателей в носителях информации большой емкости, используемых для записи, обработки и хранения данных. Фотохромные соединения, которые могут быть использованы в этом качестве, должны обладать определенным набором эксплуатационных характеристик: термической необратимостью обеих форм, высоким квантовым выходом фотопревращения, а также высокой цикличностью. Одним из классов фотохромов, удовлетворяющих этим условиям, являются 1,2-тиенилэтены, в частности продукты, содержащие в качестве этенового мостика циклопентеновый фрагмент (Photochromic properties of perhydro- and perfluorodithienylcyclopentene molecular switches, de Jong J.J.D., Lucas L.N., Hania R., Pugzlys A., Kellogg R.M., Feringa B.L., Duppen K., van Esch J.H. Eur. J. Org. Chem., 2003, 1887-1893).

В настоящее время единственным известным способом получения симметричных дитиенилэтенов с мостиковым пергидроциклопентеновым фрагментом формулы V является конденсация соответствующего 1,5-дикетона формулы IV на низковалентном титане по реакции МакМурри (Реакция МакМурри в синтезе фотохромных дигетарилэтенов. Краюшкин М.М., Калик М.А., Мигулин В.А., Успехи Химии, 78(4), 2009, 355-363).

Данная реакция описана для ряда симметричных тиенилсодержащих 1,5-дикетонов, которые предварительно получают простым ацилированием производного тиофена с использованием глутарилдихлорида и кислоты Льюиса. Например, исходя из 2-метилтиофена было получено соединение 1 (A new class of photochromic 1,2-diarylethenes; synthesis and switching properties of bis(3-thienyl)cyclopentenes. Lucas L.N., van Esch J., Kellogg R.M., Feringa B.L. Chem. Commun., 1998, 2313-2314),

на основе которого впоследствии были синтезированы многочисленные фотохромные 5,5′-дизамещеные дитиенилпергидроциклопентены, обладающие разнообразными физико-химическими свойствами и представляющие прикладной интерес: такие как водорастворимые пиридиниевые цвиттер-ионы, хелаты, пригодные для считывания и хранения информации, S-ацильные производные для связывания с металлическими наноповерхностями, флюоресцентные фотохромы, фоточувствительные органические гелеобразующие соединения, фотохромные переключатели и др. (Реакция МакМурри в синтезе фотохромных дигетарилэтенов. Краюшкин М.М., Калик М.А., Мигулин В.А., Успехи Химии, 78(4), 2009, 355-363).

В настоящее время известно лишь два примера 3-бензотиенилзамещенных циклопентенов. Ацилирование соответствующих 2-метилбензо[b]тиофенов глутарилдихлоридом с последующей конденсацией по реакции МакМурри позволило получить соединения 2 (Facile synthesis of novel photochromic 1,2-diheteroaryl-substituted cycloalkenes by titanium-induced intramolecular coupling reaction. Huang Z.-N., Xu B.-A., Jin S., Fan M.-G. Synthesis, 1998, 1092-1094) и 3 (Synthesis and charachterisation of 1,2-dihetarylethenes containing chlorobenzothiophene moieties. Krayushkin M.M., Migulin V.A., Yarovenko V.N., Barachevskii V.A., Vorontsova L.G., Starikova Z.A., Zavarzin I.V., Bulgakova V.N. Mendeleev Commun., 17, 2007, 125-127).

Необходимо отметить, что 2 не содержит функциональных групп, в то время как последующая модификация соединения 3 оказалась затрудненной в связи с низкой реакционной способностью атома хлора в бензотиофеновом кольце.

Основным недостатком этого метода является невозможность получения по реакции МакМурри целевых соединений с неэквивалентными тиофеновыми или бензотиофеновыми фрагментами, ввиду отсутствия соответствущих исходных несимметричных 1,5-дикетонов. Кроме того, дальнейшая модификация структуры фотохрома по функциональной группе в бензотиофеновом фрагменте молекулы также является актуальной проблемой на сегодняшний день.

Задачей настоящего изобретения является разработка способа получения несимметричных органических фотохромов, в частности дитиенилэтенов, содержащих в качестве мостикового звена циклопентен, позволяющего получить новые соединения, с несимметричными гетероциклическими заместителями.

Поставленная задача достигается предложенным способом получения 1,2-дитиенилзамещенных циклопентенов общей формулы I:

где R - хлор или алкил C1-C4, R1 - водород, галоген или алкил C1-C4, R2 и R3 - алкил C1-C4,

заключающимся в том, что соответствующие производные тиофена общей формулы II:

где R и R2 имеют вышеуказанные значения, R4 - водород либо R2+R4 - -CH=CH-CR1=CH-, где R1 имеет вышеуказанные значения,

ацилируют глутаровым ангидридом в присутствии хлорида алюминия (III) в среде инертного органического растворителя, полученную кислоту формулы III:

где R1, R2 и R3 имеют вышеуказанные значения,

переводят в хлорангидрид под действием оксалилхлорида и диметилформамида с последующим ацилированием полученного хлорангидрида соответствующим производным тиофена общей формулы II, где R, R1, R2 и R4 имеют вышеуказанные значения, в присутствии кислоты Льюиса и образующиеся при этом несимметричные 1,5-дикетоны подвергают внутримолекулярной циклизации на низковалентных титановых частицах при кипячении в среде инертного органического растворителя в присутствии пиридина. В качестве инертного органического растворителя используют, например, хлористый метилен, тетрагидрофуран. Процесс протекает по следующей схеме:

Исходное тиенильное производное ацилируют глутаровым ангидридом в присутствии хлорида алюминия (III) в хлористом метилене. Полученную кислоту III выделяют из реакционной смеси в чистом виде с помощью хроматографии и перекристаллизации. Под действием оксалилхлорида в присутствии диметилформамида карбоновую кислоту переводят в хлорангидрид, который не выделяют в чистом виде, а ацилируют in situ в хлористом метилене соответствующим производным тиофена в присутствии кислоты Льюиса. Причем в качестве кислоты Льюиса используют, например, хлорид алюминия (III), хлорид олова (IV). Полученные несимметричные 1,5-дикетоны выделяют из реакционной смеси и подвергают внутримолекулярной циклизации по реакции МакМурри на низковалентных титановых частицах путем кипячения в тетрагидрофуране в присутствии пиридина. В свою очередь, низковалентные титановые частицы предварительно получают из хлорида титана (IV) и порошкообразного металлического цинка в абсолютном тетрагидрофуране. Целевой продукт общей формулы I выделяют в чистом виде с помощью хроматографии.

Предложенный способ позволяет получать новые фотохромные несимметричные дитиенилэтены с пергидроциклопентеновым мостиком в четыре простые по исполнению стадии, где одно из промежуточных соединений (хлорангидрид) можно не выделять в чистом виде, что, соответственно, упрощает общий синтез. Другие новые промежуточных соединения (карбоновые кислоты и 1,5-дикетон) легко выделяются в чистом виде и могут быть использованы для любых других целей в органическом синтезе.

Предложенный способ позволяет впервые получить несимметричные фотохромы, где с мостиковым циклопентеновым кольцом одновременно связаны как тиофеновый фрагмент, так и бензотиофеновый. Использование этого способа позволяет не только значительно расширить известный на сегодняшний день арсенал фотохромных соединений, но и получать соединения, обладающие разнообразными интересными физико-химическими свойствами.

Способ иллюстрируется следующими примерами.

Пример 1

Получение 3-(2-(2,5-диметилтиофен-3-ил)циклопент-1-енил)-2-метилбензо[b]тиофена формулы:

1.1 Получение 5-(2-метилбензо[b]тиофен-3-ил)-5-оксопентановой кислоты.

4.2 г (28.4 ммоль) 2-метилбензо[b]тиофена и 3.9 г (34.2 ммоль) глутарового ангидрида растворяют в 40 мл хлористого метилена и охлаждают до -5°C. 4.6 г (34.6 ммоль) хлорида алюминия (III) добавляют порциями к полученному раствору при перемешивании при этой температуре в течение 30 минут, после чего охлаждение убирают и перемешивают образующийся раствор в течение 5 часов при комнатной температуре. Затем к реакционной массе добавляют лед и экстрагируют хлороформом (3·50 мл), органический слой промывают насыщенным раствором хлорида натрия, сушат над сульфатом натрия, фильтруют и упаривают. Остаток кристаллизуют из смеси хлористый метилен/гексан, получают 1.7 г продукта. Маточный раствор упаривают и хроматографируют на силикагеле (элюент плавно изменяют с гексан/этилацетат - 3:1 до гексан/этилацетат - 1:2). Фракции, содержащие продукт, объединяют и упаривают, остаток кристаллизуют из смеси хлористый метилен/гексан, выделяют дополнительно 1.65 г продукта. Выход 3.35 г (45%) белого порошка, т.пл. 108-110°C. Спектр ЯМР 1H (δ, м.д.) (CDCl3): 2.12 (м, 2H), 2.51 (т, 2H), 2.77 (с, 3H), 3.04 (т, 2H), 7.30-7.43 (м, 2H), 7.73 (дд, 1H), 8.11 (дд, 1H). ЯМР 13C (δ, м.д.) (CDCl3): 16.81, 19.03, 33.01, 42.34, 121.56, 123.45, 124.27, 125.08, 132.61, 137.19, 138.11, 148.20, 179.48, 197.89.

1.2 Получение 1-(2,5-диметилтиофен-3-ил)-5-(2-метилбензо[b]тиофен-3-ил)пентан-1,5-диона.

К охлажденному до -5°C раствору 2.4 г (19.1 ммоль) оксалилхлорида в 15 мл 1,2-дихлорэтана добавляют несколько капель диметилформамида. 0.65 г (2.4 ммоль) 5-(2-метилбензо[b]тиофен-3-ил)-5-оксопентановой кислоты добавляют порциями при перемешивании при этой температуре в течение 5 минут, после чего охлаждение убирают и перемешивают образующийся раствор в течение 12 часов при комнатной температуре. Реакционную смесь упаривают, сушат под вакуумом, получают 0.67 г хлорангидрида 5-(2-метилбензо[b]тиофен-3-ил)-5-оксо-пентановой кислоты, который используют без дополнительной очистки.

0.67 г (2.4 ммоль) хлорангидрида растворяют в 15 мл хлористого метилена и добавляют 0.54 г (4.8 ммоль) 2,5-диметилтиофена, раствор охлаждают до -5°C. 1.9 г (7.2 ммоль) хлорида олова (IV) добавляют по каплям к полученному раствору при перемешивании при этой температуре в течение 30 минут, после чего охлаждение убирают и перемешивают образующийся раствор в течение 12 часов при комнатной температуре. К реакционной массе добавляют лед и экстрагируют хлороформом (3·20 мл), органический слой последовательно промывают водным раствором карбоната натрия, насыщенным раствором хлорида натрия, сушат над сульфатом натрия, фильтруют и упаривают. Остаток хроматографируют на силикагеле (элюент - хлористый метилен) и кристаллизуют из системы эфир/гексан. Получают 0.46 г (54%) бежевого порошка, т.пл. 95-98°C. Спектр ЯМР 1H (δ, м.д.) (CDCl3): 2.18 (м, 2Н), 2.39 (с, 3Н), 2.67 (с, 3Н), 2.77 (с, 3Н), 2.92 (т, 2Н), 3.05 (т, 2Н), 6.99 (с, 1Н), 7.29-7.43 (м, 2Н), 7.73 (дд, 1Н), 8.11 (дд, 1H). ЯМР 13С (δ, м.д.) (CDCl3): 14.84, 15.93, 16.80, 18.78, 40.51, 42.71, 121.57, 123.52, 124.24, 125.05, 125.90, 132.92, 135.01, 135.32, 137.28, 138.25, 147.21, 147.75, 195.71, 198.59.

1.3 Получение 3-[2-(2,5-диметилтиофен-3-ил)циклопент-1-енил]-2-метилбензо[b] тиофена.

К охлажденной до -5°C суспензии 0.51 г (7.8 ммоль) порошкообразного цинка в 10 мл абсолютного тетрагидрофурана при перемешивании добавляют по каплям 0.49 г (2.6 ммоль) хлорида титана (IV), затем смесь перемешивают 1 час при комнатной температуре. К полученной суспензии, содержащей низковалентные титановые частицы, последовательно добавляют 0.21 г (2.6 ммоль) пиридина и 0.46 г (1.3 ммоль) 1-(2,5-диметилтиофен-3-ил)-5-(2-метилбензо[b]тиофен-3-ил)пентан-1,5-диона одной порцией, затем смесь кипятят с обратным холодильником в течение 8 часов. Растворитель упаривают, остаток в этилацетате фильтруют через слой силикагеля. Фильтрат упаривают, остаток хроматографируют на силикагеле (элюент - гексан) и кристаллизуют из гексана. Получают 0.36 г (86%) бесцветных кристаллов, т.пл. 97-98°C. Спектр ЯМР 1Н (δ, м.д.) (CDCl3): 1.88 (с, 3Н), 2.19 (с, 3Н), 2.21 (м, 2Н), 2.36 (с, 3Н), 2.65-3.15 (м, 4Н), 6.46 (с, 1H), 7.25-7.39 (м, 2Н), 7.63 (дд, 1Н), 7.77 (дд, 1H). ЯМР 13С (δ, м.д.) (CDCl3): 14.29, 14.52, 14.99, 23.58, 37.83, 38.03, 121.82, 122.32, 123.18, 123.70, 125.73, 130.94, 132.26, 132.91, 134.69, 134.77,135.47, 137.83,138.29,139.68.

Пример 2

Получение 5-Бром-3-(2-(5-хлор-2-метилтиофен-3-ил)циклопент-1-енил)-2-метилбензо[b]тиофена формулы:

2.1 Получение 5-(5-хлор-2-метилтиофен-3-ил)-5-оксопентановой кислоты.

15.2 г (115 ммоль) 2-хлор-5-метилтиофена и 15.7 г (138 ммоль) глутарового ангидрида растворяют в 200 мл хлористого метилена и охлаждают до 0°C. 38.2 г (287 ммоль) хлорида алюминия (III) добавляют порциями к полученному раствору при перемешивании при этой температуре в течение полутора часов, после чего охлаждение убирают и перемешивают образующийся раствор в течение 16 часов при комнатной температуре. Затем к реакционной массе добавляют лед и экстрагируют хлороформом (3·100 мл), органический слой промывают насыщенным раствором хлорида натрия, сушат над сульфатом натрия, фильтруют и упаривают, остаток в системе хлористый метилен/этилацетат 3:1 фильтруют через слой силикагеля. Фильтрат упаривают, остаток хроматографируют на силикагеле (элюент плавно изменяют с гексан/этилацетат - 10:1 до этилацетата). Фракции, содержащие продукт, объединяют и упаривают, остаток кристаллизуют из смеси гексан/хлористый метилен. Получают 17.1 г (45%) бежевого порошка, т.пл. 79-80°C. Спектр ЯМР 1Н (δ, м.д.) (CDCl3): 2.02 (м, 2Н), 2.48 (т, 2Н), 2.66 (с, 3Н), 2.87 (т, 2Н), 7.17 (с, 1H), 11.08-11.15 (уш. с, 1H). ЯМР 13C (δ, м.д.) (CDCl3): 15.90, 18.68, 32.93, 40.25, 125.29, 126.65, 134.71, 147.81, 179.40, 194.71.

2.2 Получение 1-(5-бром-2-метилбензо[b]тиофен-3-ил)-5-(5-хлор-2-метилтиофен-3-ил)пентан-1,5-диона.

К охлажденному до 5°C раствору 0.57 г (2.3 ммоль) 5-(5-хлор-2-метилтиофен-3-ил)-5-оксопентановой кислоты и 3.1 г (24.4 ммоль) оксалилхлорида в 15 мл 1,2-дихлорэтана добавляют несколько капель диметилформамида. Образующийся раствор перемешивают в течение 12 часов при комнатной температуре, затем реакционную смесь упаривают, сушат под вакуумом, получают 0.61 г хлорангидрида 5-(5-хлор-2-метилтиофен-3-ил)-5-оксопентановой кислоты, который используют без дополнительной очистки.

0.61 г (2.4 ммоль) хлорангидрида растворяют в 15 мл хлористого метилена и добавляют 0.57 г (2.5 ммоль) 5-бром-2-метилбензо[b]тиофен, раствор охлаждают до -5°C. 1.9 г (7.2 ммоль) хлорида алюминия (III) добавляют по каплям к полученному раствору при перемешивании при этой температуре в течение 15 минут, после чего охлаждение убирают и смесь перемешивают в течение 12 часов при комнатной температуре. К реакционной массе добавляют лед и экстрагируют хлороформом (3·20 мл), органический слой последовательно промывают водным раствором карбоната натрия, насыщенным раствором хлорида натрия, сушат над сульфатом натрия, фильтруют и упаривают. Остаток хроматографируют на силикагеле (элюент - хлористый метилен) и кристаллизуют из системы хлористый метилен/гексан. Получают 0.33 г (31%) желтого порошка, т.пл. 142-145°C. Спектр ЯМР 1Н (δ, м.д.) (CDCl3): 2.16 (м, 2Н), 2.66 (с, 3Н), 2.79 (с, 3Н), 2.91 (т, 2Н), 3.05 (т, 2Н), 7.18 (с, 1H), 7.42 (дд, 1H), 7.59 (д, 1Н), 8.37 (д, 1Н). ЯМР 13С (δ, м.д.) (CDCl3): 15.91, 17.16, 18.47, 40.45, 42.49, 119.57, 122.67, 125.26, 126.58, 126.71, 127.47, 132.06, 134.83, 135.74, 140.00, 147.61, 149.71, 194.70, 197.5.

3.3 Получение 5-бром-3-[2-(5-хлор-2-метилтиофен-3-ил)циклопент-1-енил]-2-метилбензо[b]тиофена.

К охлажденной до -5°C суспензии 4.8 г (73.8 ммоль) порошкообразного цинка в 50 мл абсолютного тетрагидрофурана при перемешивании добавляют по каплям 3.7 г (19.5 ммоль) хлорида титана (IV), затем смесь перемешивают 1 час при комнатной температуре. К полученной суспензии, содержащей низковалентные титановые частицы, последовательно добавляют 1.5 г (19.0 ммоль) пиридина и 2.2 г (4.8 ммоль) 1-(5-бром-2-метилбензо[b]тиофен-3-ил)-5-(5-хлор-2-метилтиофен-3-ил)пентан-1,5-диона одной порцией, затем смесь кипятят с обратным холодильником в течение 8 часов. Растворитель упаривают, остаток в этилацетате фильтруют через слой силикагеля. Фильтрат упаривают, остаток хроматографируют на силикагеле (элюент-гексан). Получают 1.53 г (75%) бесцветного масла. Спектр ЯМР 1Н (δ, м.д.) (CDCl3): 1.80 (с, 3Н), 2.14 (с, 3Н), 2.15 (м, 2Н), 2.62-3.05 (м, 4Н), 6.51 (с, 1H), 7.33 (дд, 1Н), 7.56 (д, 1H), 7.60 (д, 1H). ЯМР 13С (δ, м.д.) (CDCl3): 14.34, 14.68, 23.42, 37.72, 37.85, 118.03, 123.21, 124.83, 125.00, 126.34, 126.39, 129.88, 133.37, 133.67, 134.35, 136.86, 137.32, 137.79, 140.91.

Таким образом, предложен удобный способ получения нового класса несимметричных фотохромов, где с мостиковым циклопентеновым кольцом одновременно связаны как тиофеновый фрагмент, так и бензотиофеновый. Использование этого способа позволяет не только значительно расширить известный на сегодняшний день арсенал фотохромных соединений, но и получать соединения, обладающие разнообразными интересными физико-химическими свойствами.

Например, уникальность синтезированного соединения 4 заключается в наличии фотохромных свойств в молекуле в кристаллическом состоянии, что является редким исключением для большинства известных фотохромов. В свою очередь, соединение 5 возможно использовать для дальнейшей химической модификации, проводя замещение как по атому брома в бензотиофеновом кольце, так и по атому хлора в тиофеновом цикле. Различные химические трансформации соединения 5 позволят получить разнообразные несимметричные дитиенилэтены с циклопентеновым мостиком, представляющие в потенциале прикладной интерес: например, в нанотехнологиях; как системы для считывания и хранения информации; в качестве молекулярных переключателей, фоточувствительных гелей, флуоресцентных сенсоров и др.

Способ получения несимметричных 1,2-дитиенилзамещенных циклопентенов общей формулы I:

где R = хлор или алкил С1-С4, R1 = водород, галоген или алкил С1-С4, R2 и R3 = алкил С1-С4,
заключающийся в том, что соответствующие производные тиофена общей формулы II:

где R и R2 = имеют вышеуказанные значения, R4 = водород либо R2+R4=-CH=CH-CR1=CH-, где R1 = имеет вышеуказанные значения, ацилируют глутаровым ангидридом в присутствии AlCl3 в среде инертного органического растворителя, полученную кислоту формулы III:

где R1, R2 и R3 = имеют вышеуказанные значения,
переводят в хлорангидрид под действием оксалилхлорида и диметилформамида с последующим ацилированием полученного хлорангидрида соответствующим производным тиофена общей формулы II, где R, R1, R2 и R4 = имеют вышеуказанные значения, в присутствии кислоты Льюиса и образующиеся при этом несимметричные 1,5-дикетоны подвергают внутримолекулярной циклизации на низковалентных титановых частицах при кипячении в среде инертного органического растворителя в присутствии пиридина.



 

Похожие патенты:

Изобретение относится к соединениям формулы где переменная Y в кольце является необязательной и представляет собой гетероатом, выбранный из N, О и S, при условии, что атом N является трехвалентным, а атомы О или S - двухвалентными; k - целое число от 0 до 1; n - целое число, равное 0, 1 или 2; р - целое число, равное 0, 1 или 2; Х означает О или S; пунктирные линии представляют собой связь или ее отсутствие при условии, что в кольце имеется только одна двойная связь, а две примыкающие пунктирные линии связью не являются; R1 , R2, R3 и R 4 независимо представляют собой Н, фенил, где указанная фенильная группа необязательно независимо замещена одним, двумя или тремя заместителями - C1-6-алкилом, SO3Н, N3, галогеном, CN, NO2, NH2, C 1-6-алкокси, C1-6-тиоалкокси, C 1-6-алкиламиногруппой, C1-6-диалкиламиногруппой, С2-6-алкинилом, С2- C6-алкенилом; 5- или 6-членный гетероарил, содержащий от 1 до 3 гетероатомов, выбранных из О, S и N, где указанные гетероарильные группы необязательно независимо замещены одним, двумя или тремя заместителями - C1-6 -алкилом, SO3Н, N3 , галогеном, CN, NO2, NH 2, C1-6-алкокси, C 1-6-тиоалкокси, C1-6-алкиламиногруппой, C1-6-диалкиламиногруппой, С 2-6-алкинилом, С2-6-алкенилом, или указанные группы R1, R2 , R3 и R4 независимо представляют собой алкил, содержащий от 1 до 4 атомов угдерода, циклоалкил, содержащий от 3 до 5 атомов углерода, CH2CN, CH 2SR5, CH2NR 6R6, COR5, CH2OR5, OR 6, SR6, NR6 R6, алкенил, содержащий от 1 до 4 атомов углерода, алкинил, содержащий от 1 до 4 атомов углерода, циклоалкил, содержащий от 3 до 6 атомов углерода, фтор, хлор, бром, иод, CF3 или CN, атом кислорода, соединенный двойной связью с углеродом кольца, при условии, что примыкающая пунктирная линия внутри кольца означает отсутствие связи; R 5 означает Н, OR7, алкил, содержащий от 1 до 4 атомов углерода, CF3, циклоалкил, содержащий от 3 до 6 атомов углерода, фенил, фенил, замещенный одной или двумя алкильными группами, содержащими от 1 до 4 атомов углерода, фтором, хлором, бромом, иодом или CF 3, либо R5 представляет собой 5- или 6-членный гетероарил, содержащий от 1 до 3 гетероатомов, выбранных из О, S и N, и 5- или 6-членный гетероарил, содержащий от 1 до 3 гетероатомов, выбранных из О, S и N, замещенный одной или двумя алкильными группами, содержащими от 1 до 4 атомов углерода, фтором, хлором, бромом, иодом или CF3; R6 означает Н, алкил, содержащий от 1 до 4 атомов углерода, аллил, циклоалкил, содержащий от 3 до 6 атомов углерода, фенил, фенил, замещенный одной или двумя алкильными группами, содержащими от 1 до 4 атомов углерода, фтором, хлором, бромом, иодом или CF3, либо R 6 представляет собой 5- или 6-членный гетероарил, содержащий от 1 до 3 гетероатомов, выбранных из О, S и N, либо 5- или 6-членный гетероарил, содержащий от 1 до 3 гетероатомов, выбранных из О, S и N, замещенный одной или двумя алкильными группами, содержащими от 1 до 4 атомов углерода, фтором, хлором, бромом, иодом или CF3; R7 означает Н, алкил, содержащий от 1 до 4 атомов углерода, аллил, циклоалкил, содержащий от 3 до 6 атомов углерода, фенил, фенил, замещенный одной или двумя алкильными группами, содержащими от 1 до 4 атомов углерода, фтором, хлором, бромом, иодом или CF 3; R1 и R2 или R2 и R3, или R3 и R4 вместе могут образовывать кольцо с соответствующими атомами углерода, к которым они присоединены; фрагменты, представленные заместителями R 1 и R2 или R2 и R3, или R3 и R 4 имеют формулы (i), (ii), (iii), (iv) или (v) где m - целое число от 0 до 3; R 8 независимо представляет собой Н, алкил, содержащий от 1 до 6 атомов углерода, алкенил, содержащий от 2 до 6 атомов углерода, алкинил, содержащий от 2 до 6 атомов углерода, SO 3Н, N3, CN, NO2 , F, Cl, Br, I, CF3, COR 9, CH2OR9, OR10; SR10, C 1-6-алкиламиногруппу или C 1-6-диалкиламиногруппу, R 9 означает Н, алкил, содержащий от 1 до 6 атомов углерода, или OR10, и R10 независимо представляет собой Н или алкил, содержащий от 1 до 6 атомов углерода.

Изобретение относится к новым производным тиенилциклогексана с общей формулой (I), где R' представляет собой 2-тиенильный или 3-тиенильный радикал, R представляет собой цианорадикал или радикал формулы -С(О)А и R2'' представляет насыщенный или ненасыщенный необязательно циклический углеводородный радикал или арильный радикал.

Изобретение относится к производным (гетеро)арилциклогексана формулы (1): где значения Y1, Y1', Y2, Y2', Y3, Y3', Y4, Y4', R1-R3 приведены в первом пункте формулы, которые имеют сродство к µ-опиоидному рецептору и ORL 1-рецептору, что позволяет использовать их в лекарственном средстве для лечения боли. 4 н. и 6 з.п. ф-лы, 2 табл., 40 пр.
Наверх