Способ измерения массы сжиженного газа в замкнутом резервуаре



Способ измерения массы сжиженного газа в замкнутом резервуаре
Способ измерения массы сжиженного газа в замкнутом резервуаре
Способ измерения массы сжиженного газа в замкнутом резервуаре
Способ измерения массы сжиженного газа в замкнутом резервуаре

 


Владельцы патента RU 2421693:

Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН (RU)

Изобретение относится к электрическим методам контроля и может быть использовано для измерения массы сжиженных газов, включая криогенные жидкости, при любом их фазовом состоянии, а также для измерения положения границы раздела и диэлектрической проницаемости каждого слоя двухслойных сред. Сущность: в резонаторе, размещенном в резервуаре, возбуждают электромагнитные колебания на трех собственных частотах. Эти частоты измеряют во всем диапазоне изменения степени заполнения резервуара сжиженным газом. При этом указанные три собственные частоты выбирают такими, что значения хотя бы одной пары частот из них, нормированных к соответствующим частотам резонатора при заполнении газовой фазой всего объема резервуара, не совпадают при любой степени заполнения резонатора сжиженным газом в двухфазном состоянии, и обратные значения отношения разности квадратов обратных значений нормированных частот этой пары к такой же разности, образованной одной из указанных частот и третьей частотой, составляют монотонную зависимость от степени заполнения. Массу сжиженных газов определяют по трем измеренным собственным частотам резонатора. Технический результат: упрощение, повышение точности системы измерения массы сжиженного газа в замкнутом резервуаре. 3 ил.

 

Изобретение относится к электрическим методам контроля и может быть использовано для измерения массы сжиженных газов, включая криогенные жидкости, при любом их фазовом состоянии: однофазном (газ или жидкость) или двухфазном (газ и жидкость, разделенные плоской границей) в резервуарах произвольной известной формы в условиях неизвестных плотностей газа и жидкости. Оно может быть использовано также для измерения положения границы раздела и диэлектрической проницаемости двухслойных сред таких, как «газ-жидкость», две не смешиваемые жидкости (например, «нефть-вода») в условиях их меняющихся электрофизических свойств.

Известен способ измерения массы криогенных сред в замкнутом резервуаре, в котором массу определяют по резонансной частоте помещенного в резервуар чувствительного элемента - резонатора при известных температуре и давлении [см. В.А.Викторов, Б.В.Лункин, А.С.Совлуков. Высокочастотный метод измерения неэлектрических величин. Изд-во «Наука», 1973, с.207-208]. Однако в этом способе требуется введение зависимостей констант от температуры и давления, входящих в соотношение, устанавливающих соответствие между резонансной частотой и массой, что усложняет алгоритм измерения, а необходимость включения в систему измерения датчиков температуры и давления делает ее громоздкой.

Наиболее близким по технической сущности к предлагаемому изобретению является способ, защищенный патентом [Совлуков А.С. и В.И.Терешин. Способ определения физических параметров сжиженного газа в емкости. Патент №2262667. Опубл. 20.10.2005.] и принятый в качестве прототипа.

Способ-прототип основан на создании трех каналов получения первичной информации. В одном канале по резонансной частоте получают информацию о диэлектрической проницаемости газового слоя (ЧЭ небольшой длины находится в верхней части резервуара); в другом (длина ЧЭ соответствует высоте резервуара) и в третьем каналах (ЧЭ немного укорочен в нижней части резервуара с жидким слоем) по их резонансным частотам определяют диэлектрическую проницаемость жидкой фазы и положение границы раздела при известной диэлектрической проницаемости газовой фазы. Массу при известных размерах резервуара определяют по положению границы раздела между газовой и жидкой фазами по их плотностям, которые связаны с диэлектрической проницаемостью известной формулой Клаузиуса-Мосотти. Определение массы сжиженного газа на основе указанной структуры обеспечивается достаточно простым алгоритмом, но наличие трех чувствительных элементов со своими входом и выходом делает систему измерения громоздкой. Кроме того, для получения высокой точности измерения предъявляются жесткие требования к идентичности соответствующих конструктивных параметров чувствительных элементов.

Целью изобретения является упрощения системы измерения и повышения точности. Поставленная цель в предлагаемом способе измерения массы сжиженного газа в замкнутом резервуаре, основанном на возбуждении электромагнитных колебаний в размещенном в резервуаре резонаторе и измерении одной из его собственных частот, достигается тем, что в резонаторе дополнительно измеряют две другие его собственные частоты, такие, что значения хотя бы одной пары из трех измеренных собственных частот, нормированных к соответствующим частотам резонатора при заполнении газовой фазой всего объема резервуара, не совпадают при любой степени заполнения его сжиженным газом в двухфазном состоянии, и обратные значения отношения разности квадратов обратных значений нормированных частот этой пары к такой же разности, образованной одной из собственных частот той же пары и третьей частотой, составляют монотонную зависимость от степени заполнения резервуара, по этим выбранным и измеренным трем собственным частотам резонатора определяют массу сжиженных газов.

Достижение поставленной цели обеспечивается существенным отличием предлагаемого способа по сравнению с прототипом. Этими отличиями являются: наряду с возбуждением в резонаторе электромагнитных колебаний на одной из его собственных частот в нем дополнительно возбуждают колебания на двух других собственных частотах; эти частоты измеряют во всем диапазоне изменения степени заполнения резервуара сжиженным газом; причем эти три собственные частоты выбирают такими, что значения хотя бы одной пары частот из них, нормированных к соответствующим частотам резонатора при заполнении газовой фазой всего объема резервуара, не совпадают при любой степени заполнения резонатора сжиженным газом в двухфазном состоянии, и обратные значения отношения разности квадратов обратных значений этих нормированных частот к такой же разности, образованной одной из указанных частот и третьей частотой, составляют монотонную зависимость от степени заполнения; массу сжиженных газов определяют по трем измеренным собственным частотам резонатора по предложенному в способе алгоритму.

Идея предлагаемого способа состоит в следующем. Наличие множества собственных частот, соответствующих различным типам колебаний, возбуждаемых в электромагнитных резонаторах, которые являются чувствительными элементами радиочастотных датчиков, позволяет получать различные зависимости собственной частоты от контролируемого параметра. Это свойство, априори, делает возможным формулировать, в частности, задачу измерения диэлектрической проницаемости каждого слоя и положения плоской границы раздела между слоями с инвариантностью к их значениям, сформировав три канала получения первичной информации возбуждением в отрезке длинной линии колебаний на трех собственных частотах. Если задача измерения таким способом разрешима, то определение массы сжиженного газа можно осуществить по алгоритму с использованием соотношения между диэлектрической проницаемостью и плотностью для сжиженных газов. Покажем, что выбором структуры чувствительного элемента и собственных частот можно обеспечить решение отмеченной задачи измерения - это и составляет сущность предлагаемого способа.

Система приближенных зависимостей трех каких-либо собственных частот длинной линии от положения границы раздела x между слоями с неизвестными диэлектрическими проницаемостями ε1 - верхнего слоя, ε2 - нижнего слоя может быть записана в виде:

. В них известны функции φ(х), которые характеризуют значения интеграла от распределения энергии электрической составляющей поля в направлении изменения положения границы раздела, соответствующего каждой из выбранных собственных частот. Также известны в результате измерений резонансных частот величины , (i=1, 2, 3), в которых fi резонансные частоты из спектра собственных частот длинной линии, погруженной в двухслойную среду, a f0i - соответствующие им частоты при полном погружении ее в среду с диэлектрической проницаемостью ε1.

Из системы (1) можно получить соотношение: , в котором Ψ(х) не зависит от диэлектрических проницаемостей слоев и из которого x находится как функция, обратная Ψ(х). Чтобы х имело единственное значение, необходимо, чтобы Ψ(х) была монотонной функцией. Это одно из требований к выбору собственных частот.

Систему (1) можно также записать в виде . Для любого х любая пара из уравнений (3) представляет линейную систему двух уравнений, решение которой относительно ε1, ε2 единственно при m, n=(1, 2, 3), m≠n. Отсюда следует, что для получения единственного решения системы (1) необходимо, чтобы значения какой-либо пары из трех функций φi (или, как следует из (2), такое же условие должно выполняться и для Fi) не совпадали ни при каком положении границы раздела, кроме положений, которые соответствуют полному заполнению длинной линии средами ε1 или ε2. Это является другим требованием к выбору собственных частот.

Предлагаемый способ поясняется чертежами, где на фиг.1 приведена электрическая схема чувствительного элемента, на фиг.2 - графики функций φi(x), на фиг.3 - график функции Ψ(х).

На фиг.1 показана электрическая схема одного из возможных вариантов структуры чувствительного элемента в виде проводника 1, распределенного внутри цилиндрического резервуара 2. Все изгибы проводника изолированы от металлического корпуса резервуара (изоляторы 3), а концы проводника электрически соединены с ним (точки a и b). В проводнике 1, образующем относительно стенок резервуара отрезок длинной линии с короткозамкнутыми концами, от генератора (Г) перестраиваемой частоты через элемент связи 4 возбуждают электромагнитные колебания на частотах генератора, соответствующих трем собственным частотам длинной линии (чувствительного элемента). Соответствие частот генератора собственным частотам устанавливают по максимуму напряжения сигнала, получаемого на выходе детектора (Д) через другой элемент связи 5.

Возбуждают первую, вторую и четвертую собственные частоты в порядке их следования при перестройке частот генератора от низких к более высоким значениям. Для рассматриваемого чувствительного элемента функции φi(х), характеризующие распределение энергии электрической составляющей поля вдоль изменения положения границы раздела для выбранных собственных частот, находят по следующей формуле

(i=1, 2, 4). После интегрирования получим , , . В этих соотношениях l - половина длины проводника. Из графиков этих функций, представленных на фиг.2, с учетом соотношения (2) следует существование двух собственных частот (например, i=1 и i=2) таких, что их нормированные к соответствующим частотам длинной линии при заполнении газовой фазой всего объема резервуара значения не совпадают при любой степени заполнения резервуара сжиженным газом в двухфазном состоянии, что удовлетворяет условию единственности решения системы (3) и, значит, системы (1), если функция Ψ(х) монотонная.

Образуя функцию Ψ(x) как и подставляя найденные функции φi(x), получим, что для рассматриваемой структуры чувствительного элемента является монотонной функцией во всем диапазоне изменения положения границы раздела, которому соответствуют неравенства 0<x/l<1/2. График этой функции представлен на фиг. 3.

Таким образом возбуждением в чувствительном элементе, представленном на фиг.1, колебаний на первой, второй и четвертой собственных частотах длинной линии (в порядке их следования при перестройке частот генератора от низких к более высоким значениям) по их измеренным значениям можно однозначно определить диэлектрические проницаемости жидкой и газовой фаз сжиженного газа и положение границы раздела между ними.

По положению границы раздела между газовой и жидкой фазами и значениям их диэлектрической проницаемости, которые связаны с плотностью известной формулой Клаузиуса-Мосотти при известных размерах резервуара определяют массу сжиженного газа. В соответствии с вышепринятыми обозначениями в этой формуле εj, ρj - диэлектрические проницаемости и плотности газовой (j=1) и жидкой (j=2) фаз вещества, µ, α - его молекулярная масса и поляризуемость, N - число Авогадро.

Например, для цилиндрического резервуара объемом V0 и высотой H масса сжиженного газа определяется как С учетом формулы (6) .

Алгоритм определения массы сжиженного газа в замкнутом резервуаре включает следующие процедуры:

- измеряют текущие значения трех резонансных частот,

- по их значениям находят значение функции ψ(х) для рассмотренного примера - по формуле (5),

- вычисляют положение границы раздела двух слоев х=х*, как значение обратной к ψ(х) функции,

- вычисляют значения функций φi(x*), для рассмотренного примера по формуле (4),

- решением системы уравнений (3) определяют диэлектрические проницаемости газовой и жидкой фаз ,

- подставляя в формулу (6) х=х*, , , получают текущее значение массы сжиженного газа.

Существуют другие структуры чувствительного элемента и другие номера собственных частот, обеспечивающих измерение массы сжиженных газов.

Способ измерения массы сжиженного газа в замкнутом резервуаре, при котором возбуждают электромагнитные колебания в размещенном в резервуаре резонаторе и измеряют одну из его собственных частот, отличающийся тем, что в резонаторе дополнительно измеряют две другие его собственные частоты, такие, что значения хотя бы одной пары из трех измеренных собственных частот, нормированных к соответствующим частотам резонатора при заполнении газовой фазой всего объема резервуара, не совпадают при любой степени заполнения его сжиженным газом в двухфазном состоянии, и обратные значения отношения разности квадратов обратных значений нормированных частот этой пары к такой же разности, образованной одной из собственных частот той же пары и третьей частотой, составляют монотонную зависимость от степени заполнения резервуара, по таким образом выбранным и измеренным трем собственным частотам резонатора определяют массу сжиженного газа.



 

Похожие патенты:

Изобретение относится к ультразвуковым контрольно-измерительным устройствам и может быть использовано для контроля уровня жидкостей в резервуарах. .

Изобретение относится к области бесконтактного измерения уровня различных физических сред и может быть применено в автоматизированных системах управления технологическими процессами.

Изобретение относится к технологиям измерения уровня с использованием параболической антенны для радара уровня. .

Изобретение относится к области измерительной техники и может применяться для измерения уровня жидких или сыпучих материалов, а также для измерения расстояния. .

Изобретение относится к ультразвуковым локационным измерителям уровня жидких и сыпучих продуктов в резервуарах на автозаправочных станциях и нефтебазах, а также в химической, нефтяной, пищевой и других отраслях народного хозяйства.

Изобретение относится к устройству для определения и/или контроля, по меньшей мере, одного параметра процесса среды, содержащему, по меньшей мере, один сенсорный блок для регистрации параметра процесса, причем сенсорный блок вырабатывает измерительные сигналы, по меньшей мере, один электронный блок для управления сенсорным блоком, причем электронный блок содержит, по меньшей мере, один микропроцессор, и, по меньшей мере, один блок памяти, который связан с сенсорным блоком и в котором могут храниться управляющие данные, причем управляющие данные специфически относятся к сенсорному блоку и считываются электронным блоком.

Изобретение относится к области измерительной техники и может применяться для измерения уровня жидких или сыпучих материалов, а также для измерения расстояния. .

Изобретение относится к ультразвуковым локационным измерителям уровня жидких и сыпучих продуктов в резервуарах на автозаправочных станциях и нефтебазах, а также в химической, нефтяной, пищевой и других отраслях народного хозяйства.

Изобретение относится к бесконтактным средствам измерения объема различных сред, включая агрессивные и сыпучие (грунт). .

Изобретение относится к области бумажного производства и может быть использовано для отслеживания образования осадков в технологии бумажного производства

Изобретение относится к радиометрическому измерительному прибору с радиоактивным излучателем и детектором для регистрации образующейся в месте расположения детектора интенсивности излучения

Изобретение относится к средствам автоматизации контроля предельного уровня различных жидкостей и сыпучих материалов в промышленных и бытовых резервуарах

Изобретение относится к контрольно-измерительной технике и предназначено для обнаружения жидкости или газа в зоне контроля

Изобретение относится к области ультразвуковой измерительной техники и предназначено для автоматического дистанционного измерения уровней жидкости различных типов в производственных и транспортных емкостях в нефтехимической, химической, горнодобывающей, пищевой и других отраслях промышленности

Изобретение относится к гидрометеорологии, океанологии, океанографии и может быть использовано в синоптических предсказаниях, при строительстве береговых и портовых сооружений и мониторинге изменений водных границ океанских побережий

Изобретение относится к контролю и измерению уровня жидких и сыпучих веществ в резервуарах и может быть использовано на нефтедобывающих, нефтеперерабатывающих, химических и других предприятиях, где имеются резервуары, заполненные жидкими или сыпучими веществами
Наверх