Способ бесконтактного измерения тепловых данных движущегося объекта

Изобретение относится к области тепловых измерений. Способ бесконтактного измерения тепловой характеристики движущегося объекта заключается в оптическом приеме сигнала теплового излучения объекта, в спектральном разложении сигнала и в формировании изображения спектра излучения на поверхности матрицы приемников, сигналы с выходов которых обрабатываются процессорным блоком. Процессорная обработка состоит в инвариантной к виду параметра объекта аппроксимации сигналов аппроксимантами банка данных каждого параметра объекта, выборе наиболее точной аппроксиманты и выводе соответствующего ей значения параметра и погрешности его определения. Технический результат - повышение числа измеряемых параметров и повышение точности измерений тепловых данных. 2 ил.

 

Изобретение относится к области бесконтактного измерения тепловых данных движущегося объекта и может быть использовано в измерительной технике, метрологии, дистанционном зондировании.

Известно устройство бесконтактного измерения температуры (А.с. 1803747, МПК5 G01J 5/60, 1987 г.), содержащее оптическую систему, приемник излучения, дифференциатор, два амплитудных детектора, оптический гетеродин, перестраиваемый оптический модулятор, устройство смешения оптических пучков, резонансный усилитель и блок деления.

Известен спектральный пирометр (патент US 4605314, МПК4 G01J 5/24, 1986 г.), состоящий из электрического модуля и оптического модуля, который содержит передающий блок, блок спектрального разложения и блок детектора.

Недостатками известных устройств являются ограниченность числа измеряемых параметров объекта (только температура) и зависимость измерений от угла направления на движущийся источник излучения, так как при изменении этого угла изменяется положение изображения спектра излучения на поверхности детектора спектра излучения.

Наиболее близким к предлагаемому решению является способ, реализованный в устройстве бесконтактного измерения температуры движущегося объекта (патент RU 2213942, МПК7 G01J 5/60, 2003 г.), заключающийся в оптическом приеме сигнала теплового излучения объекта, спектральном разложении сигнала, формировании изображения спектра излучения на поверхности матрицы приемников, сигналы с выходов которых обрабатываются процессорным блоком, выполненным с возможностью поиска максимального значения выходного сигнала приемника по матрице приемников, возможностью определения максимального значения производной выходных сигналов приемников по матрице приемников и возможностью вычисления температуры по отношению максимального значения производной выходных сигналов по матрице приемников к максимальному значению выходного сигнала приемника по матрице приемников.

Недостатком этого способа является ограниченность числа измеряемых параметров движущегося объекта (только температура) и точности измерений (так как при процессорной обработке для определения максимального значения сигнала по матрице приемников используется энергия только одного приемника, выработавшего максимальный сигнал).

Задачей изобретения является повышение числа измеряемых параметров движущегося объекта и точности измерений параметров.

Решение задачи достигается тем, в способ бесконтактного измерения тепловых данных движущегося объекта, заключающийся в оптическом приеме сигнала теплового излучения объекта, спектральном разложении сигнала, формировании изображения спектра излучения на поверхности матрицы приемников, сигналы с выходов которых обрабатываются процессорным блоком, вводится процессорная обработка, состоящая в инвариантной к виду параметра объекта аппроксимации сигналов матрицы приемников аппроксимантами банка данных каждого параметра объекта, выборе по каждому параметру объекта наиболее точной аппроксиманты и выводе соответствующего ей значения параметра и погрешности его определения.

Технический результат состоит в том, что повышается число измеряемых параметров движущегося объекта за счет введения процессорной обработки, инвариантной к виду параметра, и точности измерений параметров за счет использования для процессорной обработки энергии всех приемников матрицы приемников.

Способ может быть реализован в соответствии со структурной схемой, представленной на фиг.1, а техническая конструкция поясняется на фиг.2.

Структурная схема содержит оптическую систему 1, блок 2 спектрального разложения, матрицу 3 приемников, процессорный блок 4 и банки 5 данных параметров.

Способ бесконтактного измерения тепловых данных движущегося объекта реализуется следующим образом. От источника 6 излучения тепловой сигнал поступает через оптическую систему 1 на блок 2 спектрального разложения, которым формируется изображение спектра излучения на поверхности матрицы 3 приемников, сигналы с выходов которых обрабатываются процессорным блоком 4, причем процессорная обработка состоит в инвариантной к виду параметра объекта аппроксимации сигналов матрицы 3 приемников аппроксимантами, хранящимися в банках 5 данных каждого параметра объекта, выборе по каждому параметру объекта наиболее точной аппроксиманты и выводе соответствующего ей значения параметра Pi и погрешности его определения δPi.

Например, для параметра "температура объекта", аппроксиманты которого хранятся, например, в цифровой форме в виде множества функций Планка для различных температур в банке 5 данных 1-го параметра "температура объекта", процессорная обработка состоит в выборе функции Планка, наиболее точно аппроксимирующей сигналы матрицы 3 приемников и выводе соответствующего этой функции значения температуры Т и погрешности аппроксимации δТ.

Для параметра "материал объекта", аппроксиманты которого хранятся, например, в цифровой форме в виде множества функций зависимости излучательной способности материала (Fe, Ni, Co и др.) от длины волны излучения [1, стр.104, рис.60] для различных материалов в банке 5 данных 2-го параметра "материал объекта", процессорная обработка состоит в выборе соответствующей функции, наиболее точно аппроксимирующей сигналы матрицы 3 приемников и выводе соответствующего этой функции названия материала, например, "Fe", и погрешности аппроксимации при использовании тех же алгоритмов процессорной обработки, что и в предыдущем примере.

При взаимном перемещении источника 6 излучения и измерительной системы результаты измерений так же, как и в прототипе, не изменяются.

Элементы устройства могут быть выполнены из известных модулей и на элементной базе, применяемых в измерительной технике и метрологии. Конструктивное выполнение блоков 1…4 может совпадать с аналогичными блоками прототипа. Конструкция блока 5 памяти очевидна из уровня техники. Программное обеспечение процессорной обработки типовое.

Литература

1. Брамсон М.А. Инфракрасное излучение нагретых тел. - М.: Наука, 1964. - 224 с.

Способ бесконтактного измерения тепловых данных движущегося объекта, заключающийся в оптическом приеме сигнала теплового излучения объекта, спектральном разложении сигнала, формировании изображения спектра излучения на поверхности матрицы приемников, сигналы с выходов которых обрабатываются процессорным блоком, отличающийся тем, что процессорная обработка состоит в инвариантной к виду параметра объекта аппроксимации сигналов матрицы приемников аппроксимантами банка данных каждого параметра объекта, выборе по каждому параметру объекта наиболее точной аппроксиманты и выводе соответствующего ей значения параметра и погрешности его определения.



 

Похожие патенты:
Изобретение относится к измерительной технике. .

Изобретение относится к области дистанционного измерения температуры движущегося объекта. .

Изобретение относится к детектированию температуры образца делящегося материала, разогреваемого реакторным облучением, и может быть использовано в ядерной физике, атомной энергетике, в частности в системах контроля и обеспечения безопасности ядерных реакторов.

Изобретение относится к области пирометрии и радиометрии. .

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике. .

Изобретение относится к радиационной пирометрии. .

Изобретение относится к оптическим методам контроля технологических параметров установки непрерывной разливки стали (УНРС). .

Изобретение относится к измерительной технике. .

Изобретение относится к области измерительной техники

Изобретение относится к способу детектирования интенсивности излучения, в частности, газообразной смеси продуктов реакции при помощи фотокамер

Изобретение относится к области контрольно-измерительной техники, а именно к устройствам бесконтактного измерения температуры поверхности нагретых тел методом спектрального отношения, и может быть использовано в любых отраслях промышленности для измерения температуры различных материалов и изделий

Изобретение относится к области термометрии и может быть использовано для определения температуры водосодержащей среды, а именно пульсирующей крови внутри тела

Датчик с фильтровальным устройством, на выходе которого установлено детекторное устройство, и аналитическим устройством, соединенным с детекторным устройством. Причем фильтровальное устройство имеет первый контрольный фильтр и второй контрольный фильтр, и оба фильтра имеют первую контрольную полосу и вторую контрольную полосу соответственно. При этом измеренные значения плотности интенсивности первой контрольной полосы и второй контрольной полосы служат для оценки температуры излучающего источника. Причем первый и второй контрольные фильтры образуют контрольную систему, а их контрольные полосы образуют систему контрольных полос, распределенных по обе стороны предварительной полосы. Технический результат - повышение точности измерений. 8 з.п. ф-лы, 13 ил.

Изобретение относится к области измерительной техники и может быть использовано для автоматического определения концентрации металла в руде. Согласно заявленному способу перед проведением контроля содержания металла в руде по конвейеру пропускают руду без примесей металла. Нагревают площадным источником теплового излучения, ширина которого превышает ширину конвейера. Через время τзад после окончания нагрева измеряют среднее значение температуры по нагретой поверхности руды без содержания металла Т1ср. На основании проведенных измерений формируют градуировочную кривую. Далее на конвейер непрерывно подают руду, содержащую металл, и нагревают. Через время τзад измеряют на каждом кадре i среднее значение температуры Tcpi. Определяют величину Tcpi-T1ср на основании градуировочной кривой. Используя величину (Tcpi-T1ср), определяют процентное содержание металла в руде. Также предложено устройство для реализации указанного способа. Технический результат - повышение достоверности определения содержания металла в руде. 2 н. и 4 з.п. ф-лы, 7 ил., 1 табл.

Изобретение относится к бесконтактным методам исследований теплофизических характеристик твердых тел и может быть использовано для исследований теплофизических характеристик изделий, используемых в авиакосмической, машиностроительной и энергетической промышленности. Устройство для бесконтактного определения коэффициента температуропроводности твердых тел содержит плоский оптический нагреватель и тепловизор, подключенные к компьютеру, оптически непрозрачную маску для формирования пространственного поля нагрева. Устройство также дополнительно содержит оптический объектив, предназначенный для фокусирования теплового излучения плоского оптического нагревателя и оптически непрозрачную шторку, позволяющую открывать и закрывать тепловое излучение плоского оптического нагревателя в определенные моменты времени. Технический результат - повышение точности бесконтактного определения коэффициента температуропроводности твердых тел. 1 ил.
Изобретение относится к космической технике и может быть использовано при наземных тепловакуумных испытаниях бортовой радиоэлектронной аппаратуры (РЭА) негерметичных космических аппаратов (КА). Предложен способ измерения тепловых полей электрорадиоизделий, включающий использование интегрированных программных средств и стенда тепловакуумных испытаний. Температуру поверхности прибора измеряют с помощью термодатчиков вблизи контрольных точек. Одновременно измеряют температуру всей поверхности панели или блока радиоэлектронной аппаратуры с установленными электронными компонентами с помощью тепловизионной измерительной системы через иллюминатор, обладающий высокой степенью пропускания излучения в инфракрасном диапазоне, с записью информации в цифровом виде. Технический результат - повышение точности получаемых данных.

Изобретение относится к области океанологии и может быть использовано для получения полей температуры океана в оперативном режиме. Заявлен способ оценки температуры поверхности океана по измерениям спутниковых микроволновых радиометров путем получения значений радиояркостных температур (Тя) по радиометрическим каналам и вычисления значения температуры поверхности океана (Ts) с использованием зависимости, учитывающей значение радиояркостных температур и коэффициентов настроенной Нейронной Сети. Используются четыре радиометрических канала, которые имеют следующие частоты и поляризационные режимы: υ1=6.9 ГГц горизонтальной поляризации, υ2=6.9 ГГц вертикальной поляризации, υ3=10.65 ГГц горизонтальной поляризации и υ4=10.65 ГГц вертикальной поляризации. Моделируется ослабление излучения слоем осадков до 30 мм/ч, что позволяет получать оценки температуры поверхности океана в широком диапазоне состояний океана и атмосферы для всего диапазона температур океана в условиях, включающих наличие мощной облачности и осадков до 30 мм/ч. Технический результат - повышение точности и достоверности получаемых данных.

Изобретение относится к области неразрушающего контроля и может быть использовано при проведении наружной тепловизионной съемки для диагностики состояния строительных сооружений и энергетических объектов. Тепловизионная система для проведения наружной тепловизионной съемки содержит блок обработки - микропроцессорный контроллер, блок памяти и блок визуализации, представляющие собой компьютер, тепловизор и устройство для определения температурных параметров окружающей среды, состоящее из двух пластин, выполненных из материалов с разными коэффициентами отражения и поглощения. Повышение точности измерения температурных значений объекта контроля достигается путем их корректировки в соответствии с измеренными температурными значениями окружающей среды, регистрируемыми двумя пластинами и принимаемыми как эталонные. Технический результат - повышение точности измерения температурных значений объекта контроля. 1 ил.
Наверх