Способ определения частоты радиосигналов в акустооптическом приемнике-частотомере в линейном режиме работы фотоприемника

Изобретение относится к радиоизмерительной технике и может быть использовано в качестве высокоточного измерителя параметров радиосигналов в частотомерах и демодуляторах частотно-модулированных сигналов диапазона СВЧ. Способ заключается в том, что на электрический вход акустооптического дефлектора подают анализируемый радиосигнал, где преобразовывают его в акустический и далее в оптический сигнал. Затем подвергают его Фурье-преобразованию с фиксацией распределения его интенсивности JV-элементной линейкой фотодиодов, далее формируют на их выходах видеосигналы с уровнями, пропорциональными уровням упомянутого распределения интенсивности, после чего вычисляют частоту радиосигнала, отождествляемую с абсциссой оси симметрии распределения интенсивности светового сигнала, дискретизированного фотодиодами. Изобретение обеспечивает увеличение точности измерения частоты радиосигнала. 6 ил.

 

Изобретение относится к радиоизмерительной технике и может быть использовано в качестве высокоточного измерителя параметров радиосигналов в частотомерах и демодуляторах частотно-модулированных сигналов диапазона СВЧ.

Известен (см. фиг.1) способ измерения несущей частоты радиосигналов, реализованный в акустооптическом процессоре (Гуревич А.С., Нахмансон Г.С. Обнаружение и измерение частоты узкополосных радиосигналов на фоне помех в акустооптоэлектронном спектроанализаторе. // Известия ВУЗов СССР - Радиоэлектроника. - 1981. - Т.24. - №4. - С.26-33), заключающийся в том, что сигнал S(t), частота которого подлежит измерению, подают на электрический вход акустооптического дефлектора 2, где он преобразуется в акустический сигнал, с которым взаимодействует лазерное излучение 1, в результате чего формируют световой сигнал, над которым с помощью линзы 3 выполняют операцию оптического интегрирования с последующим детектированием при помощи линейки фотоприемников 4, состоящей из дискретного набора фотодиодов, формирующих набор видеосигналов, обрабатывая которые электронной системой 5 и решающим устройством 6, определяют порядковый номер фотодиода с максимальным уровнем сигнала и значение частоты сигнала S(t), соответствующей найденному номеру.

Признаками аналога, совпадающими с признаками предлагаемого изобретения, являются подача радиосигнала на электрический вход акустооптического дефлектора, его преобразование в дефлекторе в акустический аналог, преобразование акустического аналога в световой сигнал, операция оптического интегрирования (операция Фурье-преобразования в заявляемом способе), детектирование светового сигнала фотодиодами линейки фотоприемников, формирование на их выходах видеосигналов с последующей обработкой и вычислением частоты радиосигнала, отождествляемой с абсциссой оси симметрии распределения интенсивности светового сигнала, продетектированного фотодиодами.

Причиной, препятствующей достижению технического результата, является низкая точность измерения частоты радиосигналов, которая для полосы рабочих частот процессора ΔfΣ и числа фотодиодов N в линейке фотоприемников не превышает величины 0,5(ΔfΣ/N), что соответствует половине частотного интервала между фотодиодами.

Известен также способ (см. фиг.2) измерения несущей частоты радиосигналов, реализованный в акустооптическом приемнике-частотомере (Роздобудько В.В., Дикарев Б.Д. Высокоточный акустооптический приемник-частотомер комбинированного типа. // Радиотехника. 2003. - №9. - С.31-36), заключающийся в том, что сигнал S(t), частота которого подлежит измерению, подают на электрический вход акустооптического дефлектора 2, где он преобразуется в акустический сигнал, с которым взаимодействует лазерное излучение 1, в результате чего формируют световой сигнал, над которым с помощью интегрирующей линзы 3 выполняют операцию Фурье-преобразования и детектирование при помощи линейки фотоприемников 4, формирование на их выходах видеосигналов, которые усиливают затем видеоусилителями 7, сравнивают с пороговым уровнем в пороговых устройствах 8 (при превышении порогового уровня уровнем видеосигнала пороговое устройство срабатывает), с последующим грубым определением частоты радиосигнала регистрирующим устройством I - 9 и уточнением частоты с использованием коммутатора - 10, дискриминатора - 11 и регистрирующего устройства II - 12 путем сопоставления уровней сигналов Un и U3, снимаемых с двух крайних фотодиодов, уровни которых превышают уровень 14 (фиг.3) срабатывания пороговых устройств и путем уточнения положения максимума распределения светового сигнала 13 (фиг.3), продетектированного фотодиодами линейки фотоприемников.

Признаками аналога, совпадающими с признаками предлагаемого изобретения, являются подача радиосигнала на электрический вход акустооптического дефлектора, его преобразование в дефлекторе в акустический аналог, преобразование акустического аналога в световой сигнал, операция Фурье-преобразования, детектирование светового сигнала фотодиодами линейки фотоприемников, формирование на их выходах видеосигналов с последующей обработкой и вычислением частоты радиосигнала, отождествляемой с абсциссой оси симметрии распределения интенсивности светового сигнала, продетектированного фотодиодами.

Причиной, препятствующей достижению технического результата, является недостаточная точность измерения частоты радиосигналов при значительном усложнении схемы устройства.

Наиболее близким по технической сущности к заявляемому способу является способ-прототип, реализованный в акустооптическом частотомере (фиг.4) (Роздобудько В.В. Широкополосные акустооптические измерители частотных и фазовых параметров радиосигналов. // Радиотехника. - 2001. - №1. - С.79-92) и заключающийся в том, что на электрический вход акустооптического дефлектора 2 подают измеряемый радиосигнал S(t), в акустооптическом дефлекторе он преобразуется в акустический сигнал, с которым взаимодействует лазерное излучение 1, сформированное лазером 15 и коллиматором 16, в результате чего формируют световой сигнал, над которым с помощью линзы 3 выполняют операцию Фурье-преобразования с последующим детектированием при помощи линейки фотоприемников 4, состоящей из дискретного набора фотодиодов, формирующих набор видеосигналов, которые усиливают затем видеоусилителями 7, сравнивают с пороговым уровнем в пороговых устройствах 8 (при превышении порогового уровня уровнем видеосигнала пороговое устройство срабатывает), далее определяют номера первого mп и последнего mз сработавшего порогового устройства (см. фиг.5, на котором: 13 - распределение светового сигнала, продетектированное фотодиодами линейки фотоприемников, 14 - уровень порога) и определяют частоту радиосигнала при помощи решающего устройства 6 по формуле

где fH - начальная частота диапазона частот частотомера, ΔfΣ - его полоса пропускания, N - число фотодиодов в линейке фотоприемников 4.

Признаками прототипа, совпадающими с признаками предлагаемого изобретения, являются подача радиосигнала на электрический вход акусто-оптического дефлектора, его преобразование в дефлекторе в акустический аналог, преобразование акустического аналога в световой сигнал, операция Фурье-преобразования, детектирование светового сигнала фотодиодами линейки фотоприемников, формирование на их выходах видеосигналов с последующей обработкой и вычислением частоты радиосигнала, отождествляемой с абсциссой оси симметрии распределения интенсивности светового сигнала, продетектированного фотодиодами.

Причиной, препятствующей достижению технического результата, является низкая точность измерения частоты радиосигналов, которая для полосы рабочих частот процессора ΔfΣ и числа фотодиодов N в линейке фотоприемников не превышает величины 0,25(ΔfΣ/N), что соответствует четверти частотного интервала между фотодиодами.

Задачей, на решение которой направлено предлагаемое изобретение, является увеличение точности измерения частоты радиосигналов, поступающих на вход измерителя, работающего в линейном режиме.

Технический результат достигается тем, что определяют фотодиод с максимальным уровнем сигнала, регистрируют его порядковый номер - k, а уровень сигнала на нем обозначают yk, далее измеряют уровни сигналов на соседних фотодиодах yk+1 и yk-1 и сравнивают их между собой, если yk+1 больше yk-1, то дополнительно измеряют уровень сигнала yk+2, в противном случае измеряют уровень сигнала yk-2, затем названные уровни сигналов в порядке возрастания их индексов обозначают yB, yA, yC, yD, а соответствующие этим уровням частоты обозначают fB, fA, fC и fD, далее вычисляют частоту f0 по формуле f0=(c1-c2)/(g1-g2), где g1=(yA-yB)/(fA-fB), g2=(yD-yC)/(fD-fC), c1=(yBfA-yAfB)/(fA-fB), c2=(yCfD-yDfC)/(fD-fC).

Для достижения технического результата в способе определения частоты радиосигнала в акустооптическом приемнике-частотомере, заключающемся в том, что на электрический вход акустооптического дефлектора подают анализируемый радиосигнал, где преобразовывают его в акустический и далее в оптический сигнал, затем подвергают его Фурье-преобразованию с фиксацией распределения его интенсивности N-элементной линейкой фотодиодов, далее формируют на их выходах видеосигналы с уровнями, пропорциональными уровням упомянутого распределения интенсивности, после чего вычисляют частоту радиосигнала, отождествляемую с абсциссой оси симметрии распределения интенсивности светового сигнала, дискретизированного фотодиодами, определяют фотодиод с максимальным уровнем сигнала, регистрируют его порядковый номер - k, а уровень сигнала на нем обозначают yk, далее измеряют уровни сигналов на соседних фотодиодах yk+1 и yk-1 и сравнивают их между собой, если yk+1 больше yk-1, то дополнительно измеряют уровень сигнала yk+2, в противном случае измеряют уровень сигнала yk-2, затем названные уровни сигналов в порядке возрастания их индексов обозначают yB, yA, yC, yD, а соответствующие этим уровням частоты обозначают fB, fA, fC и fB, далее вычисляют частоту f0 по формуле f0=(c1-c2)/(g1-g2), где g1=(yA-yB)/(fA-fB), g2=(yD-yC)/(fD-fC), c1=(yBfA-yAfB)/(fA-fB), c2=(yCfD-yDfC)/(fD-fC).

Сравнивая предлагаемый способ с прототипом, видно, что он содержит новые признаки, т.е. соответствует критерию новизны. Проводя сравнение с аналогами, видно, что заявляемый способ соответствует критерию «существенные отличия», так как в аналогах не обнаружены предъявляемые новые признаки.

Для доказательства существования причинно-следственной связи между заявляемыми признаками и достигаемым техническим результатом рассмотрим сущность предлагаемого способа измерения частоты и сопоставим его со способом-прототипом и способами-аналогами.

Сущность заявляемого способа заключается в следующем. На фиг.6 в координатах частота-уровень показаны два возможных варианта (а и б) распределений интенсивности светового сигнала на фотоприемнике. Предполагается, что фотоприемник работает в линейном режиме. Абсциссы точек А, В, С, D соответствуют частотам точной настройки фотодиодов фотоприемника (fB, fA, fC и fD), а ординаты этих точек равны уровням сигналов на фотодиодах (yB, yA, yC и yD). Видно, что прямые ВА и DC пересекаются в точке, абсцисса которой F практически совпадает с абсциссой оси симметрии светового распределения (абсцисса этой оси симметрии равна частоте радиосигнала). Точка пересечения прямых ВА и DC вычисляется по формуле

где g1 и g2 - угловые коэффициенты, а с1 и с2 - свободные члены в уравнениях y=g1f+c1, y=g2f+c2 прямых ВА и DC. Входящие в (2) величины вычисляются по формулам:

g1=(yA-yB)/(fA-fB),

g2=(yD-yC)/(fD-fC),

с1=(yBfA-yAfB)/(fA-f B),

c2=(yCfD-yDfC)/(fD-fC).

Пример последовательности действий, направленных на измерение частоты радиосигнала, в соответствии с заявляемым способом включает в себя следующие шаги.

1. Определяют фотодиод с максимальным уровнем сигнала и регистрируют порядковый номер этого фотодиода - k (пусть, например k=50). Уровень сигнала на этом фотодиоде обозначают у50.

2. Измеряют уровни сигналов на соседних фотодиодах: у51 и у49.

3. Сравнивают y51 и у49. Если y51>y49 (см. фиг.6а), то дополнительно измеряют уровень сигнала y52, в противном случае (см. фиг.6б) измеряют уровень сигнала y48.

После перечисленных измерений получится либо набор уровней y49, y50, y51, y52, что соответствует фиг.6а, либо набор уровней y48, y49, y50, y51, что соответствует фиг.6б.

4. Измеренные уровни сигналов обозначают в порядке возрастания их индексов. Для варианта, показанного фиг.6а: yB=y49, yA50, yC=y51, yD=y52, а для варианта, показанного на фиг.6б: yB=y48, yA=y49, yC=y50, yD=y51.

5. Частотам fB, fA, fC и fD присваивают значения: для варианта, показанного на фиг.6а: fB=f49, fA=f50, fC=f51, fD=f52, а для варианта, показанного на фиг.6б: fB=f48, fA=f49, fC=f50, fD=f51.

6. Вычисляют частоту по формуле (2).

Можно показать, что по сравнению с прототипом максимальная погрешность измерения частоты заявляемым способом может снизиться на порядок. Использование заявляемого способа измерения частоты в акустооптическом измерителе позволит улучшить технические характеристики данного устройства за счет увеличения точности измерения.

Способ определения частоты радиосигнала в акустооптическом приемнике-частотомере, заключающийся в том, что на электрический вход акустооптического дефлектора подают анализируемый радиосигнал, где преобразовывают его в акустический и далее в оптический сигнал, затем подвергают его Фурье-преобразованию с фиксацией распределения его интенсивности N-элементной линейкой фотодиодов, далее формируют на их выходах видеосигналы с уровнями, пропорциональными уровням упомянутого распределения интенсивности, после чего вычисляют частоту радиосигнала, отождествляемую с абсциссой оси симметрии распределения интенсивности светового сигнала, дискретизированного фотодиодами, отличающийся тем, что определяют фотодиод с максимальным уровнем сигнала, регистрируют его порядковый номер - k, а уровень сигнала на нем обозначают yk, далее измеряют уровни сигналов на соседних фотодиодах yk+1 и yk-1 и сравнивают их между собой, если yk+1 больше yk-1, то дополнительно измеряют уровень сигнала yk+2, в противном случае измеряют уровень сигнапа yk-2, затем названные уровни сигналов в порядке возрастания их индексов обозначают yB, yA, yC, yD, а соответствующие этим уровням частоты обозначают fB, fA, fC и fD, далее вычисляют частоту f0 по формуле f0=(c1-c2)/(g1-g2), где g1=(yA-yB)/fA-fB), g2=(yD-yC)/(fD-fC), c1=(yBfA-yAfB)/(fA-fB), c2=(yCfD-yDfC)/(fD-fC).



 

Похожие патенты:

Изобретение относится к радиоизмерительной технике и может быть использовано в качестве высокоточного измерителя частотных параметров радиосигналов в широкополосных системах связи, радиолокации и радиоразведке.

Изобретение относится к радиоизмерительной технике и может использоваться для визуального анализа амплитудного спектра исследуемых сигналов и определения вида их модуляции.

Изобретение относится к радиоизмерительной технике и может быть использовано в качестве быстродействующего панорамного измерителя несущей частоты радиосигналов в широкополосных системах связи, пеленгации и радиоразведке.

Изобретение относится к области радиоизмерительной техники и может быть использовано в качестве высокоточного приемника-частотомера, работающего в автоматическом режиме.

Изобретение относится к радиоизмерительной технике и может быть использовано в качестве высокоточного измерителя мгновенной частоты радиосигналов в широкополосных системах связи, пеленгации и радиоразведке.

Изобретение относится к радиоизмерительной технике и может быть использовано в качестве высокоточного измерителя параметров радиосигналов в частотомерах

Изобретение относится к области измерений в свободном пространстве параметров сигналов, излучаемых радиопередающими устройствами базовых станций в сетях связи с временным разделением дуплексных (входящего и исходящего) каналов. Технический результат изобретения - повышение точности измерений параметров сигналов исходящего канала базовой станции в условиях, когда в пределах одной и той же полосы частот попеременно присутствуют сигналы исходящего и входящего каналов станции. Способ измерения основан на управлении разверткой используемого анализатора спектра при помощи сигнала, формируемого детектором мощности на промежуточной частоте, и заключается в том, что пороговый уровень запуска развертки повышают до появления на спектрограмме заметной асимметрии либо провалов и/или выбросов в пределах номинальной полосы канала, снижают его до значения, при котором восстанавливается равномерная форма спектра, характеризующаяся отсутствием указанных выше искажений спектрограммы, определяют и фиксируют значение этого порогового уровня, а измерения проводят при уровне запуска развертки ниже зафиксированного порогового уровня, но выше уровня сигналов входящего канала и/или радиошума. 3 ил.

Изобретение относится к радиоизмерительной технике и может быть использовано в качестве широкополосного измерителя частоты радиосигналов. Технический результат, заключающийся в расширении полосы рабочих частот, достигается тем, что в акустооптический спектроанализатор, содержащий в своем составе лазер, коллиматор, акустооптический дефлектор, глухое зеркало, две интегрирующие линзы и две линейки фотоприемных устройств, в котором измеряемый радиосигнал подается на пьезопреобразователь акустооптического дефлектора, а на одну из его оптических граней лазерное излучение падает под отрицательным углом Брэгга и дифрагирует по направлению последовательно расположенных первой интегрирующей линзы и первой линейки фотоприемных устройств, а на вторую оптическую грань акустооптического дефлектора лазерное излучение, переотражаясь от глухого зеркала, падает под положительным углом Брэгга и дифрагирует по направлению последовательно расположенных второй интегрирующей линзы и второй линейки фотоприемных устройств, дополнительно между первой и второй гранями акустооптического дефлектора и первой и второй интегрирующими линзами включены первый и второй поляроиды, а акустооптический дефлектор выполнен на основе ниобата лития с косым углом среза, равным β, и аномальной дифракцией, характеризуемой наличием двух одинаковых полос пропускания ΔfΣ1 и ΔfΣ2 вблизи отличающихся частот перегиба f01 и f02, задаваемых соответствующей величиной угла β, и между собой взаимосвязанных посредством f02-f01≃ΔfΣ1≃ΔfΣ2, причем протяженность по свету пьезопреобразователя акустооптического дефлектора выбрана из условия совмещения полос ΔfΣ1 и ΔfΣ2 по заданному уровню неравномерности дифракционной эффективности. 4 ил.

Изобретение относится к радиоизмерительной технике. Способ определения частоты радиосигнала в акустооптическом приемнике-частотомере, заключающийся в подаче на электрический вход акустооптического дефлектора анализируемого радиосигнала, преобразовании его в акустический и далее в оптический сигнал, Фурье-преобразовании последнего с фиксацией распределения его интенсивности N-элементной линейкой фотодиодов, формировании на их выходах видеосигналов с уровнями, пропорциональными уровням упомянутого распределения интенсивности, вычислении частоты радиосигнала, отождествляемой с абсциссой оси симметрии распределения интенсивности светового сигнала, дискретизированного фотодиодами, подаче на вход дефлектора наряду с анализируемым и эталонных сигналов, нахождении в линейке фотодиодов, откликнувшихся на эти сигналы, нахождении среди откликов сигналов максимального уровня, регистрации номеров соответствующих им фотодиодов и измерении уровней сигналов и на них, и на рядом стоящих с ними фотодиодах, использовании этих данных для вычисления частот, соответствующих номерам фотодиодов с сигналами максимального уровня, выполнении перечисленных действий над откликами фотодиодов для R (где R>2) эталонных сигналов, у которых частоты F1, F2, …, Fj, …, FR равномерно распределены в частотном диапазоне частотомера и растут вместе с индексом, обозначении найденных номеров фотодиодов с сигналами максимального уровня nj (где (1≤j≤R), обозначении уровней сигналов на них и на соседних с ними фотодиодах Ynj, Ynj+1, Ynj-1 соответственно, вычислении коэффициентов knj, вычислении частотных интервалов ΔFj в полосах частот fj…fj+1, где частоты fj=Fj-knjΔFj соответствуют фотодиодам с номерами nj, последующем определении соответствующих q-тым (где nj≤q≤nj+1) фотодиодам частот fq=fj+ΔFj-(q-nj), используемых для вычисления абсциссы упомянутой оси симметрии. Технический результат заключается в увеличении точности измерения частоты радиосигнала.

Изобретение относится к области радиотехники и может быть использовано в радиолокации, связи и электромагнитном мониторинге эфира, при котором определяется спектральный состав источников излучения. Способ спектрального анализа радиосигналов заключается в том, что радиосигнал преобразуют в акустическую волну, распространяющуюся в прозрачном звукопроводе, который освещают коллимированным лазерным пучком света, над прошедшим через звукопровод светом осуществляют пространственное преобразованием Фурье, выделяют свет первого дифракционного порядка, распределение интенсивности в котором преобразуют с помощью единичного фотоприемника в электрический сигнал для последующей обработки в цифровом процессоре, при этом лазерное излучение перестраивают по частоте во времени по закону, обеспечивающему неискаженное воспроизведение спектральной панорамы, а именно ν(t)=νc+γ(t-0.5T), где νc центральная частота, γ, Τ - скорость и время перестройки соответственно. Технический результат заключается в увеличении выходного отношения сигнал-шум и точности измерения частоты. 1 ил.

Устройство селекции сигналов по частоте содержит последовательно оптически соединенные лазер, коллиматор, акустооптический модулятор (АОМ) света, первую интегрирующую линзу и пространственный фильтр, а также вторую интегрирующую линзу и линейку фотодиодов. Электрический вход модулятора является входом устройства. При этом между пространственным фильтром и второй интегрирующей линзой в ±1-х порядках дифракции установлены оптические транспаранты. Технический результат заключается в снижении искажений выходных сигналов. 1 ил.

Акустооптический измеритель параметров радиосигналов включает в себя последовательно по свету расположенные лазер, коллиматор, АО дефлектор, на электрический вход которого подается измеряемый радиосигнал, интегрирующую линзу, в фокальной плоскости которой расположено регистрирующее устройство, и цилиндрическую линзу, расположенную между интегрирующей линзой и линейкой фотоприемников. При этом на пути дифрагированных пучков между АО дефлектором и интегрирующей линзой помещается призма из светопрозрачного однородного материала с нормальной дисперсией. Причем основание призмы параллельно плоскости АО взаимодействия, а угол падения дифрагированных пучков на входную грань призмы и ее преломляющий угол являются максимально возможными, при условии отсутствия на выходной грани призмы полного внутреннего отражения световых пучков во всем рабочем диапазоне частот АО измерителя. Технический результат заключается в увеличении разрешающей способности акустооптического измерителя параметров радиосигнала. 2 ил.

Голографический способ автоматической регулировки усиления (АРУ) сигнала включает в себя обеспечение фокусировки светового потока внутри электрооптического элемента. Подачу контролируемого электрического сигнала на электроды, нанесенные на боковые грани оптически прозрачного электрооптического элемента. Направление светового потока с выхода оптически прозрачного электрооптического элемента в плоскость полуотражательной фурье-голограммы голографического интерферометра. Измерение и анализ параметров пространственно-спектрального распределения интенсивности оптического поля в плоскости формируемой интерферограммы. На основе проведенного анализа вырабатывают управляющие воздействия и подают их на усилительные элементы регулируемых усилительных каскадов приемника сигналов. Технический результат заключается в расширении динамического диапазона работы АРУ сигнала, повышение быстродействия её работы и снижение влияния фоновых шумов на работу системы АРУ сигнала. 3 ил.
Наверх