Способ определения геометрических и электрофизических параметров плоскослоистой среды



Способ определения геометрических и электрофизических параметров плоскослоистой среды
Способ определения геометрических и электрофизических параметров плоскослоистой среды
Способ определения геометрических и электрофизических параметров плоскослоистой среды

 


Владельцы патента RU 2421758:

Государственное образовательное учреждение высшего профессионального образования "Московский авиационный институт (государственный технический университет) (МАИ) (RU)

Способ определения геометрических и электрофизических параметров плоскослоистой среды (ППС). Плоскослоистую среду зондируют сигналом с помощью апертурной приемопередающей антенны, принимают сигналы, отраженные от плоскослоистой среды, предварительно измеряют в безэховой камере фоновый сигнал, отраженный от апертурной приемопередающей антенны и антенно-фидерного тракта, нормируют разностные сигналы к предварительно измеренной передаточной функции апертурной приемопередающей антенны, затем определяют и минимизируют целевую функцию. В качестве зондирующего сигнала используют короткоимпульсный широкополосный сигнал, предварительно измеряют касательную компоненту вектора электрического поля или касательную компоненту вектора напряженности магнитного поля в плоскости апертуры апертурной приемопередающей антенны, прием сигналов, отраженных от плоскослоистой среды, ведут при размещении апертурной приемопередающей антенны над поверхностью плоскослоистой среды, а положение временного интервала приема относительно момента излучения зондирующего сигнала исключает прием сигналов, находящихся вне этого временного интервала. Технический результат заключается в повышении точности определения диэлектрической и магнитной проницаемостей, проводимости и толщины каждого слоя ППС. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к радиоизмерительной технике, а именно к способам определения диэлектрической и магнитной проницаемостей, проводимости и толщины каждого слоя, плоскослоистой среды, и может быть использовано для технической диагностики при строительстве автомобильных дорог, аэродромов, мостов, производстве строительных материалов и в других отраслях промышленности.

Известен способ [1] измерения диэлектрической проницаемостей и толщины слоя, плоскослоистой среды, заключающийся в измерении данных во временной области в бистатической системе. Для относительно небольших расстояний (базе) между передающей и приемной антеннами при наличии одного или двух слоев на основе измерений могут быть определены толщины и диэлектрическая проницаемость слоев, если распространение зондирующего сигнала не имеет существенных особенностей [2]. На основе уточненной модели распространения зондирующего сигнала ошибки измерения для сред с небольшим количеством слоев становятся допустимыми, а метод является эффективным.

Однако для среды, состоящей из двух слоев и более, сложно учесть особенности распространения, и ошибка возрастает, при этом для эффективной работы бистатической системы с большой базой необходим передатчик большой мощности и чувствительный приемник.

Известен также способ измерения толщины и диэлектрической проницаемости однослойного дорожного покрытия при измерении в моностатической системе [3].

Однако указанные выше способы измерений не могут быть использованы в случае, если толщина одного из слоев многослойной среды меньше пространственной длительности зондирующего сигнала в этом слое, т.е. сигналы, отраженные от верхней и нижней границ такого слоя, не разделены во времени.

Наиболее близким техническим решением к предлагаемому является способ определения диэлектрической и магнитной проницаемостей, проводимости и толщины каждого слоя плоскослоистой среды [4], заключающийся в зондировании плоскослоистой среды сверхширокополосным сигналом со ступенчатым изменением частоты, излучаемым и принимаемым Т-рупорной приемопередающей антенной, расположенной над поверхностью среды, предварительно в безэховой камере, проводят необходимую для последующей калибровки процедуру вычитания фонового сигнала, затем определяют и минимизируют нормированную к передаточной функции приемопередающей антенны целевую функцию для фиксированного числа частот ω=ωi в виде нормы разности

зарегистрированного рассеянного средой сигнала и моделируемого сигнала соответствующего основной компоненте излучаемого и регистрируемого электромагнитного поля горизонтальным элементарным электрическим диполем, расположенным на высоте, равной расстоянию от фазового центра антенны до поверхности среды, при возбуждении его на каждой частоте, генерируемой РПЗ, единичным напряжением и оценивают - вектор-строку параметров среды, ωi - дискретный набор частот в выбранном диапазоне ΔF, i=1,2,…,NF.

Недостатками данного способа является низкая точность определения диэлектрической и магнитной проницаемости и проводимости и толщины каждого слоя плоскослоистой среды в реальных условиях, вне безэховой камеры, связанная с присутствием мешающих сигналов, а также невозможностью полного учета искажений, вносимых приемопередающей антенной в зондирующий и рассеянный средой сигналы при определении целевой функции, т.к. в известном способе при моделировании сигнала влияние векторной диаграммы направленности (ВДН) приемопередающей антенны радара подповерхностного зондирования (РПЗ) сведено лишь к учету координат ее фазового центра, а антенну заменяют горизонтальным элементарным электрическим диполем, ВДН которого существенно отлична от исходной, особенно в верней части рабочего диапазона частот. Кроме того, данное техническое решение невозможно реализовать при создании мобильной системы диагностики плоскослоистых сред в частотной области, так как в нем при проведении калибровочных измерений в безэховой камере отсутствует временное стробирование мешающих сигналов.

Технической задачей заявляемого решения является повышение достоверности и точности определения диэлектрической и магнитной проницаемостей, проводимости и толщины каждого слоя плоскослоистой среды и расширение функциональных возможностей за счет учета искажений зондирующего и рассеянного средой сигналов, вносимых приемопередающей антенной и трактом, а также временного стробирования отраженных паразитных сигналов и расширения функциональных возможностей за счет дополнительной обработки слабых рассеянных сигналов во временной области при использовании временной автоматической регулировки усиления.

Поставленная задача достигается тем, что в способе определения геометрических и электрофизических параметров плоскослоистой среды, заключающемся в том, что плоскослоистую среду зондируют сигналом с помощью апертурной приемопередающей антенны, принимают сигналы, отраженные от плоскослоистой среды, при этом зондирование и прием осуществляют на различных частотах ωi зондирующего сигнала i=1,2,…NF, предварительно измеряют в безэховой камере фоновый сигнал, отраженный от апертурной приемопередающей антенны и антенно-фидерного тракта, из принятых отраженных сигналов вычитают фоновый сигнал, нормируют разностные сигналы к предварительно измеренной передаточной функции апертурной приемопередающей антенны, затем определяют и минимизируют целевую функцию в соответствии с выражением

где U(ωi,) - амплитуды нормированных разностных сигналов соответственно на частотах ωi; - моделируемый сигнал, определяемый на основной поляризации при замене апертурной приемопередающей антенны при моделировании элементарным электрическим диполем, расположенным в фазовом центре апертурной приемопередающей антенны, а искомые параметры исследуемой плоскослоистой среды определяют путем оценки вектора параметров среды, обеспечивающего минимум целевой функции , где dn - толщина, εn - диэлектрическая проницаемость, µn - магнитная проницаемость, и σn - проводимость, соответствующих слоев плоскослоистой среды, согласно изобретению, в качестве зондирующего сигнала используют короткоимпульсный широкополосный сигнал, предварительно измеряют касательную компоненту вектора электрического поля или касательную компоненту вектора напряженности магнитного поля в плоскости апертуры апертурной приемопередающей антенны, прием сигналов, отраженных от плоскослоистой среды, ведут при размещении апертурной приемопередающей антенны над поверхностью плоскослоистой среды на расстоянии zгр, при котором отраженный от плоскослоистой среды сигнал длительностью τc≤2zгр/c, где c - скорость света, попадет во временной интервал приема, размер которого соответствует длительности отраженного сигнала, а положение временного интервала приема относительно момента излучения зондирующего сигнала исключает прием сигналов, находящихся вне этого временного интервала, при этом амплитуду моделируемого сигнала определяют как сумму конечного числа плоских волн, отраженных от плоскослоистой среды, амплитуды которых и углы отражения определяются значениями касательной компоненты вектора электрического поля или касательной компоненты вектора напряженности магнитного поля в плоскости апертуры апертурной приемопередающей антенны на фиксированных частотах ωi.

Поставленная задача также достигается тем, что амплитуду моделируемого сигнала определяют в соответствии со следующей зависимостью:

где NPW=Np×Nq - сумма плоских Е- и Н-волн, падающих под углами θpq, φpq на плоскослоистую среду с коэффициентами отражения , где и - значения амплитуд отраженных сигналов, являющихся функциями расстояния от фазового центра апертурной приемопередающей антенны до поверхности плоскослоистой среды, векторной диаграммы направленности апертурной приемопередающей антенны в направлении θpq, φpq и спектральной плотности тока, возбуждающего апертурную приемопередающую антенну, ω - частота сигнала.

Повышение точности определения диэлектрической и магнитной проницаемостей, проводимости и толщины каждого слоя, плоскослоистой среды достигается за счет использования моделированного сигнала для формирования целевой функции с учетом векторной импульсной характеристики приемопередающей антенны, и временного стробирования отраженных паразитных сигналов.

На фиг.1 представлена структурная электрическая схема устройства, реализующего способ определения геометрических и электрофизических параметров плоскослоистой среды; на фиг.2 показана функциональная схема реализации способа; на фиг.3а, б, в - графики, поясняющие способ.

Устройство для определения геометрических и электрофизических параметров плоскослоистой среды (фиг.1) содержит приемопередающий модуль, включающий генератор 1 зондирующих сигналов, направленный ответвитель (HO) 2, к одному концу основного плеча которого подсоединен выход генератора 1, а к другому - через антенно-фидерный тракт 3, например, отрезок коаксиального кабеля, приемопередающая антенна 4, один конец дополнительного плеча HO 2 нагружен на балластную нагрузку 5, а к другому подсоединены последовательно соединенные малошумящий усилитель 6, стробоскопический преобразователь 7, программируемый усилитель 8, АЦП 9 и программируемая логическая интегральная схема (ПЛИС) 10, а также блок развертки 11, выход которого соединен с вторым входом стробоскопического преобразователя 7, и оперативное запоминающее устройство (ОЗУ) 12, при этом ПЛИС 10 соединена с генератором 1 зондирующих сигналов, стробоскопический преобразователь 7 и (ОЗУ) 12. Обработка сигналов осуществляется с помощью персональной ЭВМ (ПЭВМ) 13.

Способ определения геометрических и электрофизических параметров плоскослоистой среды реализуется следующим образом.

При реализации заявленного способа, при измерениях и расчете моделируемого сигнала необходимо последовательно выполнить следующие операции:

1. Для приемопередающей антенны 4 предварительно, известными методами [1] на основе измерений в плоскости, расположенной параллельно апертуре SA (фиг.2), последовательно перемещают приемную антенну-зонд, предназначенную для регистрации сверхширокополосных короткоимпульсных сигналов, например диполь или рамочную антенну с известной передаточной функцией, и последовательно в заданных точках, расстояние между которыми определяются минимальной длиной волны диапазона рабочих частот, регистрируют сигналы на выходе зонда и на основе учета его передаточной функции определяют значения касательных компонент электрического поля и или магнитного поля и при возбуждении его от генератора 1 сверхкоротким импульсом тока I(t) амплитудой J0, и длительностью τu<<τA, где τA=1/ΔF - постоянная времени антенны 3, ΔF полоса рабочих частот антенны 4 (например, при полосе частот антенны ΔF=2000·МГц величина τA=0.5 нс).

2. Затем во временной области при использовании зондирующего короткоимпульсного сверхширокополосного сигнала проводят процедуры калибровки, позволяющие осуществлять временное разделение сигналов внутренних переотражений в тракте 3 и полезного сигнала, отраженного от исследуемой плоскослоистой среды 14, включающие:

- вычитание фона, т.е. сигналов, обусловленных внутренними переотражениями в тракте 3 и регистрируемых при отсутствии полезного сигнала, в этом режиме регистрации антенна 4 излучает в свободное пространство;

- формирование временного интервала (окна), т.е. осуществление временного стробирования в области регистрации анализируемого сигнала. Для этого измеряют сигналы, отраженные от ППС при изменении высоты АППА над ППС, и фиксируют ее минимальное значение zгр, при котором отраженный от ППС сигнал длительностью τc≤2zгр/c, где c - скорость света, попадет во временной интервал приема, размер которого соответствует длительности отраженного сигнала, а положение временного интервала приема относительно момента излучения зондирующего сигнала исключает прием сигналов, находящихся вне этого временного интервала.

3. Затем используя методику измерений во временной области, рассмотренную в [2], на основе регистрации отраженного от плоского экрана электромагнитного поля, при излучении генератором 1 зондирующего электромагнитного сигнала определяют координаты фазового центра антенны 4 za. Результаты измерений по определению координат антенн №1 и №2 приведены на фиг.3.

4. На основе быстрого преобразования Фурье (БПФ) осуществляют преобразование Фурье измеренных во временной области касательных компонентов напряженности вектора электрического поля, получают значения и на фиксированных частотах ωi диапазона рабочих частот, затем на основе двумерного БПФ в пространственной области определяют амплитуды излучаемых угловых спектров для фиксированного числа NPW плоских волн Н- и Е-волн, распространяющихся под углами θp, φq и выбранных значений частот ωi:

,

при этом оценка числа плоских волн NPW=(Np+1)(Nq+1), распространяющихся в направлении θp, φq, проводится на основе сравнения с результатами измерений в ближней зоне, полученных на расстоянии, равном zгр от апертуры антенны 4, на фиг.2:

- оператор двумерного преобразования Фурье.

5. Для плоских Н- и Е-волн, падающих под углами θp, на плоскослоистую среду 14 на основе известных формул определяются коэффициенты отражения и на фиксированных частотах ωi, и заданного вектора параметров среды .

6. Для вычисления весовых коэффициентов определяют спектральную плотность тока I(t) на входных клеммах передающей антенны, а затем, используя принцип взаимности, определяют амплитуду поля плоских Н- и Е-волн в режиме передачи (см. п.4).

7. Изменяя параметры заданного вектора в заданном интервале изменений параметров среды определяют и на основе известных генетических алгоритмов, подробно рассмотренных в [5], минимизируют целевую функцию .

Запуск генератора 1 зондирующих сигналов осуществляется ПЛИС 10. Формируемые импульсы излучаются антенной 4, электромагнитное поле падает на исследуемую плоскослоистую среду 14 и рассеивается. Рассеянное средой 14 поле падает на антенну 4, принятый сигнал распространяется по тракту НО 2 в обратном направлении и с выхода НО 2 поступает на вход малошумящего усилителя 6, затем - на стробоскопический преобразователь 7 и программируемый усилитель 8, который выполняет также функцию управляемого элемента цепи временной автоматической регулировки усиления (ВАРУ, блок развертки 11, при этом программируемый усилитель 8 выполняет также функцию управляемого элемента цепи временной автоматической регулировки усиления (ВАРУ), и через АЦП 9 в ОЗУ 10 и на ПЭВМ 13, которая принимает и отображает на экране результаты зондирования.

Регистрация сверхширокополосных короткоимпульсных сигналов реализована стробоскопическим способом: за один период повторения зондирующего сигнала регистрируется одна выборка принимаемого сигнала. Момент взятия выборки отраженного сигнала определяется блоком развертки 11, который представляет собой программируемую линию задержки и вырабатывает импульсы запуска генератора стробирующих импульсов. Каждый импульс запуска стробоскопического преобразователя 7 при формировании временной развертки сигнала и соответственно каждая последующая выборка сигнала имеют временной сдвиг Δt относительно предыдущей выборки. Длительность временного окна, в пределах которого осуществляется регистрация принимаемого сигнала, равна ΔtN, где N - число отсчетов сигнала (256, 512 или 1024). Шаг дискретизации по времени Δt может программно регулироваться от 5 пс шагом 1 пс, позволяя регистрировать отраженные сигналы во временном окне длительностью до 400 не. Таким образом, для записи одной реализации отраженного от среды сигнала, состоящей из N отсчетов, требуется временной интервал NT, где T - период повторения зондирующего сигнала. При N=1024 и T=1 мкс для записи одной реализации сигнала требуется около 1 мс. Если используется режим накопления сигнала, то продолжительность цикла регистрации увеличивается пропорционально количеству усреднений (8…256).

При включении устройства сохраненные в ПЭВМ 13 параметры и настройки загружаются через параллельный интерфейс в ОЗУ 12, после чего из ПЭВМ 13 выдается команда на начало цикла зондирования. В регистраторе ПЛИС 10 в соответствии с кодами ОЗУ 12 формируются управляющие сигналы с необходимыми временными диаграммами, которые запускают генератор зондирующего сигнала 1, управляют стробоскопическим преобразователем 7 и приемником, регистрирующим сигналы, поступающие от антенны 4, и включающим малошумящий усилитель 6, стробоскопический преобразователь 7, усилитель 8. Усилитель 8, установленный на выходе стробоскопического преобразователя 7, может программно изменять коэффициент усиления по мере увеличения номера отсчета регистрируемого сигнала, позволяя тем самым компенсировать затухание, вызванное распространением сигнала в слоистой среде.

По завершении сбора отсчетов сигнала регистратор ПЛИС 10 выдает команду готовности. ПЭВМ 13 принимает и отображает на экране ПЭВМ 13 результаты зондирования в виде N отсчетов U(t) или спектральной плотности , и цикл зондирования повторяется.

В специализированном программном обеспечении (СПО) 15 реализовано определение геометрических и электрофизических параметров плоскослоистой среды на основе метода вычислительной диагностики. Основные программы (ОП) 16 организуют графический интерфейс, управляют режимами работы РПЗ, принимают данные от него, а также запускают программы СПО 15: программу П1 17 расчета моделируемого сигнала и программу П2 18 минимизации целевой функции , реализуемую на основе генетического алгоритма, подробно рассмотренного в [5]. Результаты определения геометрических и электрофизических параметров слоистых сред, полученные на основе предлагаемого способа, отображаются на экране ПЭВМ 13.

Таким образом, предлагаемый способ позволяет повысить точность определения диэлектрической и магнитной проницаемостей, проводимости и толщины каждого слоя плоскослоистой среды за счет полного учета искажений зондирующего и рассеянного средой сигналов, вносимых приемопередающей антенной 2 и антенно-фидерным трактом 3, а также временного стробирования отраженных паразитных сигналов. Для диагностики не требуется специальных безэховых камер при проведении калибровочных измерений и, в отличие от прототипа, реализовать техническое решение на основе мобильной системы диагностики плоскослоистых сред во временной области.

Источники информации

1. Chunlin Huang, Yi Su, "A New GPR Calibration Method for High Accuracy Thickness and Permittivity Measurement of Multi-layered Pavement", Tenth International Conference on Ground Penetrating Radar (GPR2004), Delft, The Netherlands, pp.627-630, 2004.

2. Chien-ping Kao, Jing Li и др. Measurement of Layer Thickness and Permittivity Using a New Multi-Layer Model from GPR Data, 11th International Conference on Ground Penetrating Radar, June 19-22, 2006, Columbus Ohio, USA.

3. Заявка на изобретение №2005121579/28 от 08.07.2005, кл. G01V 1/00 (2006.01), от 20.01.2007, Бюл №2,

4. S.Lambot, E.C.Slob, I.Bosch. - Modeling of GPR for Accurate Characterization of Subsurface Electric Properties. - IEEE Trans. On Gescience and Remote Sensing, vol.42, No.11, 2004, pp.2555-2567 (прототп).

5. J.Robinson, S.Sinton, and Y.Rahmat-Samii, "Particle swarm, genetic algorithm, and their hybrids: Optimization of a profiled corrugated horn antenna," in Proc. IEEE Int. Symp. Antennas Propag., TX, Jun. 2002, vol.1, pp.314-317.

1. Способ определения геометрических и электрофизических параметров плоскослоистой среды, заключающийся в том, что плоскослоистую среду зондируют сигналом с помощью апертурной приемопередающей антенны, принимают сигналы, отраженные от плоскослоистой среды, при этом зондирование и прием осуществляют на различных частотах ω1 зондирующего сигнала i=1,2,…NF, предварительно измеряют в безэховой камере фоновый сигнал, отраженный от апертурной приемопередающей антенны и антенно-фидерного тракта, из принятых отраженных сигналов вычитают фоновый сигнал, нормируют разностные сигналы к предварительно измеренной передаточной функции апертурной приемопередающей антенны, затем определяют и минимизируют целевую функцию в соответствии с выражением , где U(ωi) - амплитуды нормированных разностных сигналов соответственно на частотах ωi; - моделируемый сигнал, определяемый на основной поляризации при замене апертурной приемопередающей антенны при моделировании элементарным электрическим диполем, расположенным в фазовом центре апертурной приемопередающей антенны, а искомые параметры исследуемой плоскослоистой среды определяют путем оценки вектора параметров среды, обеспечивающего минимум целевой функции , где dn - толщина, εn - диэлектрическая проницаемость, µn - магнитная проницаемость, и σn - проводимость соответствующих слоев плоскослоистой среды, отличающийся тем, что в качестве зондирующего сигнала используют короткоимпульсный широкополосный сигнал, предварительно измеряют касательную компоненту вектора электрического поля или касательную компоненту вектора напряженности магнитного поля в плоскости апертуры апертурной приемопередающей антенны, прием сигналов, отраженных от плоскослоистой среды, ведут при размещении апертурной приемопередающей антенны над поверхностью плоскослоистой среды на расстоянии zгр, при котором отраженный от плоскослоистой среды сигнал длительностью τс<2zгр/c, где с - скорость света, попадет во временной интервал приема, размер которого соответствует длительности отраженного сигнала, а положение временного интервала приема относительно момента излучения зондирующего сигнала исключает прием сигналов, находящихся вне этого временного интервала, при этом амплитуду моделируемого сигнала определяют как сумму конечного числа плоских волн, отраженных от плоскослоистой среды, амплитуды которых и углы отражения определяются значениями касательной компоненты вектора электрического поля или касательной компоненты вектора напряженности магнитного поля в плоскости апертуры апертурной приемопередающей антенны на фиксированных частотах ωi.

2. Способ по п.1, отличающийся тем, что амплитуду моделируемого сигнала определяют в соответствии со следующей зависимостью:

где NPW=Np×Nq - сумма плоских Е- и Н-волн, падающих под углами θpq, φpq на плоскослоистую среду с коэффициентами отражения
и - значения амплитуд отраженных сигналов, являющихся функциями расстояния от фазового центра апертурной приемопередающей антенны до поверхности плоскослоистой среды, векторной диаграммы направленности апертурной приемопередающей антенны в направлении θpq, φpq и спектральной плотности тока, возбуждающего апертурную приемопередающую антенну,
ω - частота сигнала.



 

Похожие патенты:

Изобретение относится к области геофизики и может быть использовано для определения несущей способности грунтов. .

Изобретение относится к геофизической разведке углеводородов. .

Изобретение относится к области испытательной техники и предназначено для использования при испытании трубопроводов с помощью акустических течеискателей. .

Изобретение относится к геофизике с использованием электромагнитных волн высокой и низкой частоты, и предназначено для обнаружения подповерхностных объектов, в том числе и в районах с высоким уровнем регулярных электрических помех.

Изобретение относится к геофизике. .

Изобретение относится к области испытательной техники и направлено на снижение влияния шумов на уровень полезного акустического сигнала. .

Изобретение относится к морской геофизике. .

Изобретение относится к области электромагнитных геофизических исследований и может быть использовано для определения трасс прокладки подводных трубопроводов. .

Изобретение относится к области геофизики и может быть использовано для определения координат эпицентра ожидаемых землетрясений, горных ударов и контроля электромагнитной обстановки в сейсмоопасной зоне земной коры с борта летательного аппарата

Изобретение относится к геофизической разведке

Изобретение относится к морской электромагнитной разведке

Изобретение относится к области обеспечения сейсмологической безопасности и может быть использовано для снятия упругих напряжений в земной коре

Изобретение относится к области поисково-спасательных работ и может быть использовано для поиска засыпанных биообъектов и их останков в районах землетрясений, а также засыпанных, например, снежными лавинами или горными обвалами

Изобретение относится к морской электроразведке методом становления электромагнитного поля в открытом море, на шельфе Мирового океана и в районах, закрытых полярными льдами

Изобретение относится к области поисково-спасательных работ и может быть использовано для поиска засыпанных биообъектов при землетрясениях, снежных лавинах или горных обвалах
Наверх