Способ формования изделий из эпоксидной смолы


 


Владельцы патента RU 2422273:

Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" (RU)

Изобретение относится к способу переработки полимерных композиционных материалов и может быть использовано для изготовления изделий из связующего на основе эпоксидной смолы, например рабочих колес машин типа центробежного нагнетателя воздуха. Техническим результатом, на который направлен способ по изобретению, является повышение физико-механических свойств изделий. Способ включает предварительную обработку связующего, формование, отверждение и механическую обработку заготовки. При этом предварительную обработку связующего производят в жидкой фазе наносекундными электромагнитными импульсами и электромагнитным перемешиванием. Используют наносекундные электромагнитные импульсы длительностью 1 нс, амплитудой от 8 до 12 кВ, мощность в одном импульсе от 1 до 2 МВт, частота повторения импульсов 1000 Гц, продолжительность обработки от 25 до 35 минут. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к технологии переработки полимерных композиционных материалов и может быть использовано для изготовления изделий из связующего на основе эпоксидной смолы, например рабочих колес машин типа центробежного нагнетателя воздуха.

Известен способ изготовления изделий из эпоксидной смолы, включающий формование, отверждение и механическую обработку заготовки (заявка №94015074/26, B29C 41/04, дата публикации 27.02.1996).

Указанный способ трудоемок и сложен из-за несовершенства технологической оснастки.

Ближайшим аналогом является способ формования изделий из эпоксидной смолы, включающий предварительную обработку связующего, формование, отверждение и механическую обработку заготовки (патент РФ №2257297, B29C 41/04, БИ №21 от 27.07.2005).

Однако известный способ не позволяет получать высокие физико-механические свойства изделий (прочность при растяжении, твердость, прочность при статическом изгибе, ударная вязкость).

Технической задачей, на решение которой направлено изобретение, является повышение физико-механических свойств изделий.

Указанная задача решается тем, что в способе, включающем предварительную обработку связующего, формование, отверждение и механическую обработку заготовки, согласно изобретению, предварительную обработку связующего производят в жидкой фазе наносекундными электромагнитными импульсами и электромагнитным перемешиванием. Кроме того, используют наносекундные электромагнитные импульсы длительностью 1 нс, амплитудой от 8 до 12 кВ, мощность в одном импульсе от 1 до 2 МВт, частота повторения импульсов 1000 Гц, продолжительность обработки от 25 до 35 минут.

При этом обработка наносекундными электромагнитными импульсами способствует формированию дополнительных межатомных химических связей, с другой стороны, обработка электромагнитным перемешиванием (длительность импульсов которой превышает длительность наноимпульсов) способствует сшиванию макромолекул полимера (связующего). Таким образом, за счет такой комбинированной обработки связующего происходит изменение структуры полимера, повышение прочности межатомных и межмолекулярных связей и, следовательно, повышение физико-механических свойств готового изделия. Предлагаемые режимы обработки являются оптимальными для связующего - эпоксидной смолы.

Сущность изобретения поясняется чертежом, где приведена схема установки для совместного воздействия наносекундными электромагнитными импульсами и электромагнитным перемешиванием полимерного связующего.

Пример реализации способа.

Для осуществления способа используют аппарат 1 управления установки электромагнитного перемешивания, катушку индуктивности 2, электропитательные катушки индуктивности 3, генератор 4, электропитание электродов 5 излучения наносекундными электромагнитными импульсами, полимерное связующее (Этал Т 210) 6, диэлектрическую емкость 7, диэлектрические подставки 8 и электроды 9 излучения наносекундных электромагнитных импульсов.

Установка работает следующим образом.

Предварительно смешенное с отвердителем полимерное связующее 6 загружают в жидком виде в диэлектрическую емкость 7, в которой размещают электроды 9. Затем включают электропитательные катушки индуктивности 2, 3 электродов 9 и производят обработку полимерного связующего 6 в течение от 25 до 35 минут. При этом используют наносекундные электромагнитные импульсы длительностью 1 нс, амплитудой от 8 до 12 кВ, мощность в одном импульсе от 1 до 2 МВт, частота повторения импульсов 1000 Гц.

При этом обработка наносекундными электромагнитными импульсами способствует формированию дополнительных межатомных химических связей, с другой стороны, обработка электромагнитным перемешиванием (длительность импульсов которой превышает длительность наноимпульсов) способствует сшиванию макромолекул полимера (связующего). Таким образом, за счет такой комбинированной обработки связующего происходит изменение структуры полимера, повышение прочности межатомных и межмолекулярных связей и, следовательно, повышение физико-механических свойств готового изделия. Контроль за состоянием полимерного связующего 6 осуществляют путем отбора контрольных проб известным способом. После обработки связующее использовалось (например) для вакуумно-компрессионной пропитки с термообработкой заготовок при формовании рабочих колес на стеклопластиковой основе для машин типа центробежного нагнетателя воздуха.

В отличие от аналогов предлагаемый способ обеспечивает повышение прочности, жесткости, модуля упругости и температуры плавления изделий на основе эпоксидной смолы в процессе эксплуатации за счет повышения качества композиции.

1. Способ формования изделий из эпоксидной смолы, включающий предварительную обработку связующего, формование, отверждение и механическую обработку заготовки, отличающийся тем, что предварительную обработку связующего производят в жидкой фазе наносекундными электромагнитными импульсами и электромагнитным перемешиванием.

2. Способ формования изделий из эпоксидной смолы по п.1, отличающийся тем, что используют наносекундные электромагнитные импульсы длительностью 1 нс, амплитудой от 8 до 12 кВ, мощность в одном импульсе от 1 до 2 МВт, частота повторения импульсов 1000 Гц, продолжительность обработки от 25 до 35 мин.



 

Похожие патенты:

Изобретение относится к способу формирования изделий из полимерных композиционных материалов центробежным способом и может быть использовано для изготовления подшипников скольжения.

Изобретение относится к области изготовления полимерных пластмассовых труб центробежным методом. .

Изобретение относится к изготовленной центробежным методом многослойной полимерной трубе. .

Изобретение относится к технологии формирования полимерных изделий центробежным способом и может быть использовано для изготовления подшипников скольжения. .

Изобретение относится к технологии формования полимерных изделий центробежным способом и может быть использовано для изготовления подшипников скольжения. .

Изобретение относится к области изготовления пластмассовых труб методом центробежного литья и предназначено для изготовления труб с волокнистым и песчаным наполнителями.

Изобретение относится к способам и устройствам для центробежного формования изделий из полимерных композиций и может найти применение в машиностроении, в промышленности пластических масс и других отраслях промышленного производства.

Изобретение относится к устройствам, обеспечивающим ротационное формование полых изделий из пластмасс, преимущественно из ПВХ пластизолей, и может быть использовано в промышленности по переработке пластических масс, в частности для производства игрушек из поливинилхлоридных (ПВХ) пластизолей.

Изобретение относится к устройствам для центробежного формования и касается формования тонкостенных изделий из порошкообразных термопластичных полимеров в пустотелой форме на нагретых формообразующих поверхностях формы.

Изобретение относится к полимерным материалам для ротационного формования
Изобретение относится к области изготовления изделий из полимерных материалов путем термоформования

Изобретение относится к способу формирования изделий из полимерных композиционных материалов центробежным способом и может быть использовано для изготовления подшипников скольжения

Изобретение относится к технологии переработки полимерных композиционных материалов и может быть использовано для изготовления изделий из связующего на основе эпоксидной смолы

Изобретение относится к способу формирования изделий из полимерных композиционных материалов центробежным способом и может быть использовано для изготовления подшипников скольжения. Способ заключается в том, что подшипник формуют послойно и в зависимости от слоя в металлическую втулку, предварительно обработанную антиадгезионным составом, поочередно загружают полимерную композицию на основе эпоксидного связующего и наполнителей, требуемых для данного слоя. Затем, выбрав режим формования, позволяющий равномерно распределить наполнитель по слою, формируют каждый слой подшипника. Антифрикционный слой формуется с применением бронзовой сетки. Толщина сетки должна быть не более 0,5 мм, а величина ячейки сетки должна находиться в пределах от 0,1 мм до 0,3 мм. В состав связующего для антифрикционного слоя входит только высокотемпературная эпоксидодиановая смола и фторопластовый наполнитель. Технический результат: повышение долговечности и надежности подшипника скольжения. 3 з.п. ф-лы, 1 ил.

Изобретение относится к химии, к полимерным материалам. Описан способ получения полимерных изделий на основе полидициклопентадиена центробежным формованием, включающий смешивание дициклопентадиена с рутенийсодержащим катализатором и модифицирующими добавками, помещение смеси в форму, вращение формы, в процессе которого ее нагревают до температуры 40-110°C и выдерживают при данной температуре в течение 5-60 мин., а затем выгружают изделие из формы и нагревают до температуры 150-300°C, выдерживая при данной температуре в течение 5-120 мин. Технический результат - снижение расхода катализатора, обеспечение возможности управления процессом полимеризации. 32 пр.

Изобретение относится к устройствам для переработки полимерных композиционных материалов и может быть использовано для изготовления изделий из связующего на основе эпоксидной смолы, например рабочих колес машин типа центробежного нагнетателя воздуха. Устройство для формования изделий из эпоксидной смолы включает зону предварительной обработки связующего наносекундными электромагнитными импульсами с диэлектрической емкостью, зону электромагнитного перемешивания путем виброколебания, зону формования, отверждения и зону механической обработки заготовки. Зона электромагнитного перемешивания имеет направляющие в виде роликов, которые расположены в верхней части диэлектрической емкости по ее периметру с возможностью фиксации диэлектрической емкости в вертикальном положении от произвольных колебаний. Изобретение обеспечивает повышение физико-механических свойств изделий. 1 ил.

Изобретение относится к термоплавкой композиции на основе термопластичного эластомера. Предложена термоплавкая композиция в форме гранул и/или порошка с размером частиц не более 1400 мкм, содержащая 40-70 мас.% селективно гидрогенированного блок-сополимера (ГБПС); 8,5-15 мас. % гомополимера пропилена и/или сополимера на основе пропилена; 1-30 мас.% гомополимера бутилена, сополимера на основе бутилена или комбинации гомополимера бутилена и сополимера на основе бутилена и 7,7-20 мас. % пластифицирующего масла, выбранного из нафтеновых и парафиновых масел, в которой ГБПС (i) представляет собой линейный или разветвленный гидрогенированный блок-сополимер, имеющий общую конфигурацию A-B-A, (A-B)n, (A-B-А)n, (A-В-A)nХ, (A-B)nX, либо смесь этих конфигураций, где n - целое число от 2 до примерно 30, X - остаток сшивающего агента, где а) перед гидрогенированием каждый блок A представляет собой полимерный блок моноалкениларена, а каждый блок B - блок сополимера с регулируемым распределением, содержащий по меньшей мере один сопряженный диен и по меньшей мере один моноалкениларен; б) после гидрогенирования восстановлено 0-10% двойных связей арена и по меньшей мере 90% двойных связей сопряженного диена; в) среднечисленная молекулярная масса каждого блока A составляет 5,0 - 7,5 кг/моль, общая кажущаяся среднечисленная молекулярная масса линейного ГБПС составляет 70 - 150 кг/моль, общая кажущаяся среднечисленная молекулярная масса разветвленного ГБПС составляет 35 - 75 кг/моль на ветвь; г) каждый блок В содержит концевые области, связанные с блоками A и обогащенные звеньями сопряженного диена, а также одну или более областей, не связанных с блоками A и обогащенных звеньями моноалкениларена; д) общее содержание моноалкениларена в гидрогенированном блок-сополимере составляет 20 - 45 мас.%; е) содержание моноалкениларена в каждом блоке B составляет 10 - 40 мас.%; ж) каждый блок B имеет показатель блочности по стиролу менее 10% и з) содержание винила в каждом блоке B составляет по меньшей мере 40 мас.%. Технический результат - предложенная композиция может применяться на стандартном оборудовании при более низких температурах и меньшем количестве циклов обработки. 3 н. и 15 з.п. ф-лы, 3 ил., 6 табл., 11 пр.
Наверх