Электролит для электрохимического осаждения композиционного хромового покрытия

Изобретение относится к области электрохимического осаждения металлических покрытий, в частности хромовых, и может быть использовано для получения коррозионно-стойкого, твердого, термо- и износостойкого покрытия в машиностроении, электронике и других отраслях промышленности. Электролит содержит (г/л): 150-300 хромового ангидрида, 1,5-3 серной кислоты, 0,03-0,08 наноуглеродного материала с количеством графеновых слоев не более 30, диаметром волокон от 10 до 60 нм, длиной не менее 2 мкм и количеством структурированного углерода не менее 95%. Технический результат - получение беспористых хромовых покрытий с высокой микротвердостью и низкой неравномерностью. 1 з.п. ф-лы.

 

Изобретение относится к области электрохимического осаждения металлических покрытий, в частности хромовых, и может быть использовано для получения коррозионно-стойкого, твердого, термо- и износостойкого покрытия в машиностроении, электронике и других отраслях промышленности.

Известен электролит хромирования [1], содержащий хромовый ангидрид 150-250 г/л, серную кислоту 1,5-2,5 г/л, ультрадисперсные частицы кремния 3,0-30 г/л и производные фосфорилированнных тибамидов 0,1-1,0 г/л. Такой электролит позволяет получать покрытия для защиты изделий от высокотемпературного окисления и ползучести, т.е. с высокими показателями жаростойкости и жаропрочности.

Основным недостатком такого электролита является низкая микротвердость получаемого покрытия;

Известен электролит для нанесения композиционных покрытий на основе хрома

[2], содержащий хромовый ангидрид 200-250 г/л, серную кислоту 2,0-2,5 г/л, добавку бензоилпирувоилгидразинокарбонилметилпиридиний хлорид 0,1-0,5 г/л и частицы твердой фазы - дисперсные частицы нитрида бора 8-20 г/л и фторида кальция 40-60 г/л. Дисперсные частицы нитрида бора и фторида кальция предпочтительно использовать в массовом отношении 1:(3-5). Такой электролит обеспечивает повышение антифрикционности и пластичности хромовых покрытий за счет включения в состав композиционных осадков частиц твердой смазки и снижения микротвердости хромовой матрицы.

Недостатками такого электролита являются:

- большое количество частиц твердой фазы, что усложняет приготовление и использование электролита и делает невозможным подкрепление его при его истощении;

- низкая микротвердость получаемого покрытия;

- большая неравномерность получаемого покрытия.

Эти недостатки частично устранены в электролите для нанесения хромалмазных покрытий [3].

В электролит, содержащий хромовый ангидрид, серную кислоту, кремнефтористый калий и сернокислый барий, дополнительно введена алмазосодержащая шихта, в которую могут входить ультрадисперсные алмазы в количестве 40=60 мас.%.

Такой состав характеризуется следующими недостатками:

- низкой микротвердостью получаемого покрытия;

- большой неравномерностью получаемого покрытия.

Технический результат изобретения заключается в получении беспористых хромовых покрытий с высокой микротвердостью и низкой неравномерностью.

Технический результат достигается тем, что электролит для электрохимического осаждения хромового покрытия, содержащий хромовый ангидрид, серную кислоту и воду, дополнительно содержит углеродный наноматериал с количеством графеновых слоев не более 30, диаметром волокон от 10 до 60 нм, длиной не менее 2 мкм и количеством структурированного углерода не менее 95%, при следующем соотношении компонентов, г/л:

Хромовый ангидрид - 150-300

Серная кислота - 1,5-3

Наноуглеродный материал - 0,03-0,08.

В качестве наноуглеродного материала в состав электролита введен наноуглеродный материал «Таунит», очищенный от никелевого катализатора, используемого для его синтеза.

Такой электролит характеризуется минимальным количеством компонентов и дисперсных добавок.

Электролит готовят следующим образом.

Предварительно хромовый ангидрид растворяют в дистиллированной воде при температуре 60-70°C. После этого добавляют серную кислоту в количестве 1% массы от массы хромового ангидрида. Электролит перемешивают и ведут его приработку с целью накопления ионов Cr3+ при температуре 45-50°C в течение 12 часов.

После этого в раствор электролита добавляют наноуглеродный материал с количеством графеновых слоев не более 30, диаметром волокон от 10 до 60 нм, длиной не менее 2 мкм и количеством структурированного углерода не менее 95% и электролит обрабатывают на ультразвуковой установке с частотой 22 кГц для уменьшения размеров агломератов из наноуглеродных трубок и их более равномерного распределения в электролите. В качестве углеродного материала предпочтительно применение углеродного наноматериала «Таунит», производитель углеродного наноматериала ООО «НаноТехЦентр», Россия, г.Тамбов.

Подготовку поверхности деталей перед нанесением гальванического покрытия проводят стандартными способами с использованием известных растворов.

Осаждение проводят при температуре 45-60°C. Функция изменения тока: 1,5 минуты осуществляется работа на токе обратной полярности (когда деталь является анодом), при этом анодная плотность тока 40 А/дм2, далее включается прямая полярность (когда деталь является катодом) и осуществляется толчок тока в течение 1 минуты, катодная плотность тока при этом составляет 150 А/дм2, далее в течение одной минуты осуществляется плавный переход до катодной плотности тока 70 А/дм2.

Пример

Электрохимическое осаждение покрытия на предварительно подготовленную поверхность основы из материала сталь Ст3 проводят в электролите, содержащем (в г/л):

Хромовый ангидрид - 150-300

Серная кислота - 1,5-3

Наноуглеродный материал «Таунит», очищенный от никелевого катализатора - 0,04.

Процесс проводят при температуре 50°C. Функция изменения тока: 1,5 минуты осуществляется работа при токе обратной полярности (когда деталь является анодом), при этом анодная плотность тока составляет 40 А/дм2. Далее ток переключается на прямую полярность (когда деталь является катодом) и осуществляется толчок тока в течение 1 минуты, катодная плотность тока при этом составляет 150 А/дм2; далее в течение одной минуты осуществляется плавный переход до катодной плотности тока 70 А/дм2, при которой происходит нанесение покрытия в течение 60 минут. За это время получают покрытие средней толщиной 21 мкм.

Полученное композиционное покрытие по показателю «микротвердость» превосходит обычные хромовые покрытия в 1,5-1,6, а хромалмазные покрытия в 1,3-1,4 раза.

Источники информации

1. Патент РФ №2126463, МПК C25D 03/04, 15/00 1998 г.

2. Патент РФ №2117080, МПК C25D 3/00, 1998 г.

3. Патент РФ №2107115, МПК C25D 15/00, 1998 г.

1. Электролит для электрохимического осаждения хромового покрытия, содержащий хромовый ангидрид, серную кислоту и воду, отличающийся тем, что он дополнительно содержит наноуглеродный материал с количеством графеновых слоев не более 30, диаметром волокон от 10 до 60 нм, длиной не менее 2 мкм и количеством структурированного углерода не менее 95% при следующем соотношении компонентов, г/л:

хромовый ангидрид 150-300
серная кислота 1,5-3
наноуглеродный материал 0,03-0,08

2. Электролит по п.1, отличающийся тем, что в качестве наноуглеродного материала в состав электролита введен наноуглеродный материал «Таунит», очищенный от никелевого катализатора, используемого для его синтеза.



 

Похожие патенты:
Изобретение относится к гальванотехнике, в частности к нанесению хромовых покрытий. .
Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении и других отраслях промышленности для увеличения срока службы деталей в узлах машин, механизмов, а также пресс-форм, обладающих повышенной микротвердостью.
Изобретение относится к области гальванотехники и может быть использовано в различных отраслях промышленности. .
Изобретение относится к области гальванотехники, в частности к осаждению композиционного покрытия никель-бор-оксид алюминия, и может быть использовано в различных отраслях промышленности в качестве покрытий, обладающих высокой микротвердостью.
Изобретение относится к гальванотехнике, в частности к электрохимическому осаждению никелевых покрытий, и может быть использовано для получения многофункционального твердого, коррозионно-, термо-, износостойкого, а также защитно-декоративного покрытия в машиностроении.
Изобретение относится к области электрохимического осаждения металлических покрытий, в частности никелевых, и может быть использовано для получения многофункционального твердого, коррозионно-, термо-, износостойкого, а также защитно-декоративного покрытия в машиностроении.

Изобретение относится к области гальванотехники, а в частности к способам получения электрохимических композиционных покрытий на основе хрома. .

Изобретение относится к области электрохимического нанесения покрытий на стальные изделия, работающие в гидросистемах и узлах трения - скольжения, в частности, к нанесению хромовых покрытий в экологически безопасных электролитах, содержащих соли трехвалентного хрома.
Изобретение относится к области гальванотехники и нанотехнологий. .
Изобретение относится к области порошковой гальванотехники, а именно к материалам для получения композиционных гальванических покрытий, и может быть использовано для создания износостойких покрытий в условиях массового, серийного и единичного производства

Изобретение относится к гальваностегии и может быть использовано в ремонтном производстве при нанесении металлических и композиционных покрытий на цилиндрические поверхности
Изобретение относится к области нанесения химических и гальванических композиционных покрытий на основе сплава никеля

Изобретение относится к области технологии осаждения электрохимических покрытий, а именно к области технологии осаждения композиционных электрохимических покрытий (КЭП), и может найти применение для повышения износостойкости внутренних поверхностей деталей машин, приборов и инструмента
Изобретение относится к области гальванотехники
Изобретение относится к области гальванотехники и может найти применение в авиационной, автомобильной и других отраслях промышленности
Изобретение относится к области гальванотехники и может быть использовано для нанесения композиционных гальванических градиентных покрытий на основе хрома в машиностроении и других отраслях промышленности при изготовлении или восстановлении деталей и инструментов с износостойкими антифрикционными покрытиями, в частности, для повышения стойкости деформирующих инструментов
Изобретение относится к электролитическому нанесению покрытий на металлические изделия и может быть использовано в металлургии и машиностроении

Изобретение относится к области электрохимического нанесения оптически черных оксидно-керамических покрытий на алюминий и его сплавы и может быть использовано при изготовлении панелей радиаторов, приборов индикации в электронной и автомобильной промышленности, в строительной индустрии
Изобретение относится к области гальванотехники и может быть использовано в машиностроении и других отраслях промышленности при изготовлении деталей и инструментов с износостойкими покрытиями, а также для их восстановления

Изобретение относится к области электрохимического осаждения металлических покрытий, в частности хромовых, и может быть использовано для получения коррозионно-стойкого, твердого, термо- и износостойкого покрытия в машиностроении, электронике и других отраслях промышленности

Наверх