Рабочий цилиндр двигателя внутреннего сгорания



Рабочий цилиндр двигателя внутреннего сгорания

 


Владельцы патента RU 2422659:

Общество с ограниченной ответственностью "ПАОЛ" (RU)

Изобретение относится к машиностроению, точнее к двигателестроению. Рабочий цилиндр включает гильзу и поршень с поршневыми кольцами, взаимодействующими с внутренней поверхностью гильзы. Изобретение предусматривает снабжение внутренней поверхности гильзы направляющими выступами, образованными модифицированным материалом поверхностного слоя с увеличенным удельным объемом на участках поверхности, размещаемыми в виде многозаходной спирали, и капиллярной структурой, располагаемой между спиралями направляющих выступов. Изобретение предусматривает также выполнение эффективного гидравлического радиуса капилляров в структуре в пределах (1,3-3,5) от высоты направляющих выступов. Такое выполнение снизит трение и износ. 1 ил.

 

Изобретение относится к области машиностроения, точнее к двигателестроению, и может быть использовано для повышения ресурсных характеристик двигателя путем одновременной оптимизации таких рабочих характеристик, как кпд, трение, теплонапряженность и износ.

Известен рабочий цилиндр двигателя внутреннего сгорания, содержащий гильзу и поршень с поршневыми кольцами (см., например, В.И.Анохин. Отечественные автомобили. М.: Машиностроение, 1964, стр.31).

Его недостатками являются значительные потери на трение пары поршневое кольцо - гильза и увеличенный износ гильзы, особенно при запуске двигателя («холодный» пуск), что обусловливает снижение коэффициента полезного действия двигателя и его моторесурса.

Техническим результатом предлагаемого изобретения является улучшение всех основных рабочих характеристик цилиндра, а именно повышение коэффициента полезного действия, снижение трения и износа, а также уменьшение его теплонапряженности и, следовательно, повышение моторесурса двигателя.

Указанный результат достигается тем, что в известном рабочем цилиндре, содержащем гильзу и поршень с поршневыми кольцами, внутренняя поверхность гильзы снабжена направляющими выступами, образованными модифицированным материалом поверхностного слоя с увеличенным удельным объемом на участках поверхности, размещаемых в виде многозаходной спирали, и капиллярной структурой, располагаемой между спиралями направляющих выступов, причем эффективный гидравлический радиус капилляров в структуре выбран в пределах (1,3-3,5) высоты направляющих выступов.

Сущность предлагаемого изобретения поясняется чертежом, где изображен фрагмент продольного разреза рабочего цилиндра двигателя внутреннего сгорания.

Рабочий цилиндр 1 двигателя внутреннего сгорания содержит гильзу 2, поршень 3 и поршневые кольца 4.

Внутренняя поверхность 5 гильзы 2 снабжена направляющими выступами 6, образованными структурно модифицированным материалом поверхностного слоя на участках поверхности, размещаемыми в виде многозаходной спирали. Направляющие выступы 6 могут быть сформированы, например, с помощью лазерной обработки поверхности 5.

Под действием лазерного нагрева и последующего быстрого охлаждения в поверхностном слое материала гильзы 2 глубиной 0,3-1 мм образуется структура мартенсита и ледебурита, отличающаяся помимо высокой твердости большим удельным объемом по сравнению с необработанным материалом, что и обусловливает выступание обработанного участка над исходным профилем поверхности 1-1. Под исходным профилем в данном случае понимается теоретическая поверхность, шероховатость которой равна нулю (идеально гладкая поверхность). Высота выступов равна примерно 7-8 мкм при ширине - 4-10 мм.

Создание термоупрочненных лазером спиральных полос на внутренней поверхности гильзы известно (см., например, Григорьянц А.Г., Сафонов А.Н. Методы поверхностной лазерной обработки. - М.: Высшая школа, 1988, стр.121). Термоупрочнение применяется для повышения износостойкости гильзы рабочего цилиндра. В предлагаемом техническом решении известный признак используется по иному техническому назначению: с целью получения структуры материала с большим удельным объемом и образования капиллярной структуры 7, которой заполнено пространство между исходным профилем (теоретической поверхностью) и эквидистантной ему условной цилиндрической поверхностью 2-2, касательной к вершинам направляющих выступов 6, не заполненное последними.

Капиллярная структура 7 может быть выполнена любым известным способом. В условиях отлаженного производства двигателей наиболее оптимальным является формирование указанного профиля внутренней поверхности 5 токарной обработкой поверхности по седьмому квалитету точности. Строго говоря, при токарной обработке на поверхности образуется один капилляр в виде винтовой треугольной канавки 8 на всей длине точения.

Шириной канавки определяется эффективный гидравлический радиус капилляра по известной формуле:

где b - максимальная ширина канавки;

а - половина угла при вершине треугольника, образующего профиль канавки 8.

Эффективный гидравлический радиус определяет высоту всасывания жидкости капилляром. При параметрах микрогеометрии поверхности, получаемой в результате токарной обработки в условиях реальной смачиваемости поверхности маслом, высота всасывания одного капилляра недостаточна для удержания масла от стекания в картер при неработающем двигателе.

После лазерной обработки поверхности 5 вследствие оплавления и частичного испарения микровыступов 9, образующих стенки капилляра, и модификации структуры материала в зоне лазерного воздействия направляющие выступы 6 разделяют один капилляр на множество изолированных друг от друга микроканалов, т.е. образуется капиллярная структура 7.

Причем оплавленная поверхность направляющих выступов 6 соответствует как минимум девятому классу чистоты и не требует дальнейшей доводки (шлифования, хонингования и т.п.).

При запуске двигателя капиллярная структура 7 заполняется моторным маслом, которое надежно удерживается в каждом ее капилляре силами поверхностного натяжения и не стекает в картер после остановки двигателя. Каждый последующий пуск независимо от времени остановки происходит без дефицита смазки, за счет чего уменьшается износ гильзы.

Таким образом, высота всасывания перестает лимитировать величину эффективного гидравлического радиуса после дробления единого капилляра на множество отдельных микроканалов. Его величина выбирается только из условия размещения капилляров снаружи границы поверхности 2-2, чтобы при перемещениях поршня 3 с поршневым кольцом 4 внутри цилиндра 1 не препятствовать взаимодействию кольца с закаленными вершинами направляющих выступов 6. Указанный критерий позволяет конкретизировать величину эффективного гидравлического радиуса и определить его по формуле:

где h - высота треугольного профиля капиллярной канавки, примерно совпадающая с высотой направляющего выступа.

Учитывая, что а - половина угла при вершине профиля канавки, примерно соответствующего углу между передней и задней режущей кромкой резца, и подставляя его значения от 30° до 45° в формулу (2), получаем R~(1,3-3,5)h.

Количество заходов спирали при формировании направляющих выступов 6 также диктуется необходимостью уменьшения прогиба поршневого кольца 4, опирающегося на соседние закаленные направляющие выступы 6, под действием радиальных составляющих сил, действующих на поршень 3, для минимизации давления поршневого кольца 4 на незакаленные микровыступы 9 с целью недопущения их износа. С учетом величины радиальных сил, жесткости кольца и внутреннего диаметра гильзы число заходов составляет для автомобильных двигателей - 8…12.

Имеющийся между поршневым кольцом и внутренней поверхностью гильзы зазор в силу своей малости (1-50 мкм) является частью капиллярной системы 7 и также заполнен маслом по всему периметру, за исключением замка поршневого кольца. Таким образом, создается гидравлический затвор, препятствующий проникновению продуктов сгорания топлива, обладающих высоким запасом тепловой энергии, в картер надежнее, чем в случае хонингованной поверхности. Действительно, микрорельеф, образованный выступами капиллярных канавок 8 на внутренней поверхности 5 гильзы 2 в зоне взаимодействия с кольцом 4 представляет собой дополнительное лабиринтное уплотнение зазора, позволяющее уменьшать паразитные протечки уплотняемой среды, что, в свою очередь, ведет к повышению кпд двигателя.

Кроме того, капиллярный рельеф на внутренней поверхности гильзы на 20-30% увеличивает ее площадь, что ведет к снижению температуры поверхности, а это, в свою очередь, уменьшает среднюю температуру масла, тормозит процессы его коксования и улучшает теплоотвод от поршня (снижая его теплонапряженность), обусловливает повышение моторесурса двигателя.

Рабочий цилиндр двигателя внутреннего сгорания, содержащий гильзу и поршень с поршневыми кольцами, отличающийся тем, что внутренняя поверхность гильзы снабжена направляющими выступами, образованными модифицированным материалом поверхностного слоя с увеличенным удельным объемом, на участках поверхности, размещаемыми в виде многозаходной спирали, и капиллярной структурой, располагаемой между спиралями направляющих выступов, причем эффективный гидравлический радиус капилляров в структуре выбран в пределах 1,3-3,5 высоты направляющих выступов.



 

Похожие патенты:

Изобретение относится к гильзе цилиндра для двигателя внутреннего сгорания дизельного типа. .

Изобретение относится к машиностроению и может быть использовано в поршневых машинах, например в ДВС. .

Изобретение относится к машиностроению, а именно к цилиндропоршневой группе (ЦПГ) двигателей внутреннего сгорания (ДВС) и поршневых компрессоров. .

Изобретение относится к области машиностроения , в частности к двигателестроению . .

Изобретение относится к машиностроению и может быть использовано в двигателях внутреннего сгорания (ДВС)

Изобретение относится к двигателестроению

Изобретение относится к блоку цилиндров двигателя

Изобретение относится к смазке двигателей. Большой дизельный двигатель, имеющий, по меньшей мере, один цилиндр (2), который имеет отверстие (В) и продольную ось (А), и отличающийся тем, что поршень (3) установлен с возможностью возвратно-поступательного движения по беговой поверхности (21), при этом система (5) смазки предназначена для смазки цилиндра, который включает в себя, по меньшей мере, две точки (6) смазки, через которые смазочный материал может наноситься на беговую поверхность (21), а также систему (8) подачи смазочного материала для передачи смазочного материала от накопителя (10) для смазочного материала к точкам (6) смазки. Система подачи (8) смазочного материала имеет, по меньшей мере, одно устройство (7) сопла насоса, которое расположено в точках (6) смазки, при этом каждое устройство (7) сопла насоса включает в себя насос (72), который соединен не более чем с двумя точками (6) смазки таким образом, что каждое устройство (7) сопла насоса снабжает смазочным материалом не более чем две точки (6) смазки. Изобретение обеспечивает повышение эффективности смазки цилиндров и поршней. 14 з.п. ф-лы, 5 ил.

Изобретение может быть использовано в двигателестроении. Цилиндропоршневая группа включает в себя поршень с компрессионными и маслосъемным кольцами, контактирующими с рабочей поверхностью гильзы (4) цилиндра. Гильза (4) цилиндра имеет канавки (6) и (7), заполненные цветным металлом. На рабочей поверхности гильзы (4) цилиндра двигателя в местах наибольшего износа выполнены канавки (6), имеющие форму встречных синусоид. В средней части гильзы 4 цилиндров, на расстоянии 13 мм от крайних точек верхней и нижней синусоид, выполнены две канавки (7) в виде встречных замкнутых колец, отдельных друг от друга с углом подъема 17 градусов к диаметральной плоскости гильзы (4). Расстояние от начала первых синусоидальных канавок (6) до верхнего торца гильзы равно 10±0,5 мм. В поперечном сечении канавки (6) и (7) имеют глубину и ширину 1,5 мм. Технический результат заключается в повышении износостойкости, уменьшении неравномерности износа гильз цилиндров по высоте. 3 ил.

Изобретение может быть использовано в двигателях внутреннего сгорания. Цилиндропоршневая группа включает в себя поршень и гильзу (8) цилиндров. Поршень с компрессионными и маслосъемными кольцами контактирует с рабочей поверхностью гильзы (8) цилиндра, имеющей канавки (9) и (10), заполненные цветным металлом. На днище поршня и на канавки компрессионных и маслосъемных колец наносят упрочняющее покрытие микродуговым оксидированием в виде сплошного оксидированного слоя. В местах наибольшего износа гильзы (8) цилиндра, соответствующего положениям поршня в верхней и нижней мертвых точках, выполнены канавки (9). Канавки (9) имеют форму встречных синусоид. В средней части гильзы (8) цилиндров на расстоянии 0,10…0,12 от высоты гильзы цилиндра крайних точек верхней и нижней синусоид выполнены две канавки (10) в виде встречных замкнутых колец, отдельных друг от друга. Расстояние от начала первых синусоидальных канавок (9) до верхнего торца гильзы равно 8…10% от высоты рабочей поверхности гильзы. В поперечном сечении канавки (9) и (10) имеют глубину и ширину, равные 0,25 от минимальной толщины гильзы. Максимальное расстояние между соседними канавками соответствует расстоянию между верхним компрессионным и нижним маслосъемным поршневыми кольцами. Технический результат заключается в повышении износостойкости и снижении неравномерности износа гильзы цилиндра. 5 ил.

Изобретение может быть использовано в поршневых двигателях. Цилиндр (1) поршневого двигателя предназначен для приема поршня (2), снабженного поршневым кольцом (3). Цилиндр (1) содержит щелевидный паз (5) для приема и распределения смазки и поверхность (7) скольжения для поршня (2). Поверхность (7) скольжения проходит от зоны (8) верхней мертвой точки к ряду очищающих пазов (6), расположенных на цилиндре. Щелевидный паз (5) расположен на поверхности (7) скольжения и содержит первую и вторую части. Первая часть содержит первый и второй концы. Первый конец содержит первый участок, открытый во внутреннее пространство цилиндра. Второй конец содержит второй участок, открытый во внутреннее пространство цилиндра. Вторая часть содержит второй и третий концы. Третий конец содержит третий участок, открытый во внутреннее пространство цилиндра. Первый открытый участок и третий открытый участок расположены ниже поршневого кольца (3), проходящего по щелевидному пазу (5). Второй открытый участок одновременно расположен выше поршневого кольца (3), проходящего по щелевидному пазу (5), с возможностью образования канала для смазки между внутренним пространством цилиндра, расположенным выше поршневого кольца (3), и внутренним пространством цилиндра, расположенным ниже поршневого кольца (3), при расположении поршневого кольца (3) в положении между одним из первого или третьего открытых участков и вторым открытым участком. Предусмотрено множество щелевидных пазов, концы которых соединены друг с другом таким образом, что образован непрерывный канал, который проходит вдоль поверхности (7) скольжения. Впускное отверстие (16) для подачи смазки расположено в непрерывном канале. Раскрыты применение цилиндра в качестве цилиндра для приема поршня большого двигателя и способ распределения смазки в цилиндре. Технический результат заключается в равномерном распределении смазки по всей длине цилиндра и в снижении потребления смазки. 3 н. и 12 з.п. ф-лы, 15 ил.

Изобретение относится к смазке дизельных двигателей. Инжекторы расположены в плоскости, перпендикулярной к оси цилиндра, и каждый инжектор включает в себя корпус (25) инжектора и наконечник (5) форсунки, расположенный в продолжение корпуса инжектора, причем наконечник форсунки снабжен на его наружном свободном конце несколькими отверстиями (10) форсунки для подачи нескольких струй (А, В, С, D) смазочного масла из каждого инжектора на стенку (10)цилиндра. Чтобы осуществить равномерное распределение смазочного масла, даже если инжекторы не равномерно распределены вдоль периферийной поверхности цилиндра, отверстия форсунки расположены под различными углами радиально относительно центральной линии (22), проходящей через наконечник форсунки, а также аксиально относительно плоскости, перпендикулярной к центральной линии наконечника форсунки. Благодаря этому центр (15) каждой из струй (А, В, С, D) смазочного масла будет располагаться на стенке цилиндра на одинаковом уровне над инжекторами, но в различных зонах периферийной поверхности стенки цилиндра. Изобретение обеспечивает равномерное распределение смазочного масла на стенке цилиндра. 3 н. и 9 з.п. ф-лы, 6 ил.
Наверх