Способ коррозионного мониторинга магистрального трубопровода с устройством катодной защиты



Способ коррозионного мониторинга магистрального трубопровода с устройством катодной защиты
Способ коррозионного мониторинга магистрального трубопровода с устройством катодной защиты

 


Владельцы патента RU 2422717:

ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ГАЗПРОМЭНЕРГОДИАГНОСТИКА" (RU)

Способ коррозийного мониторинга магистрального трубопровода с устройством катодной защиты относится к трубопроводному транспорту и может быть использован для проведения коррозионного мониторинга магистрального трубопровода. Способ заключается в измерении величин защитных потенциалов Un трубопровода относительно соответствующих электродов сравнения в n контрольных точках, расположенных вдоль трубопровода с заданным пространственным шагом, по которым судят о коррозионном состоянии магистрального трубопровода. При этом величины защитных потенциалов Un на контролируемом участке трубопровода измеряют m раз, где m≥10, в каждой контрольной точке n с заданным периодом времени с последующим определением гистограмм распределения измеренных значений Un в каждой контрольной точке n, затем, используя построенные гистограммы, определяют процентное отношение εn значений защитного потенциала к общему числу m проведенных измерений для значений Un, после чего строят гистограммы процентных отношений εn для каждой точки n, затем определяют значения εn, вышедшие за пределы заданного интервала (Uвn…Uнn) допустимых значений, где Uвn и Uнn - верхнее и нижнее допустимые значения заданного интервала допустимых значений в точке n, и при превышении в какой-либо контрольной точке значения εn заданного порогового значения εпор диагностируют наличие коррозионной опасности магистрального трубопровода в данной контрольной точке. Технический результат - повышение надежности контроля коррозионной активности грунта в местах пролегания магистрального трубопровода. 7 з.п. ф-лы, 2 ил.

 

Изобретение относится к трубопроводному транспорту и может быть использовано для проведения коррозионного мониторинга магистрального трубопровода (МТ).

Известны способы аналогичного назначения, реализуемые в системах перехода МТ через дороги /Патент РФ №2349824, кл. F16L 7/00, 2009; Патент РФ №2264578, кл. F16L 7/00, 58/00, F1705/02, 2005/.

В известных решениях коррозионное состояние МТ контролируется в одной точке. Однако не нарушая существа реализуемого в известных системах способа, последний можно распространить на несколько контрольных точек МТ. Поэтому одно из известных технических решений, например последнее, можно принять за прототип.

Тогда прототип способа заключается в измерении величин защитных потенциалов Un МТ относительно соответствующих электродов сравнения в контрольных точках, где n=2, 3 …, расположенных вдоль МТ с заданным пространственным шагом, по которым судят о коррозионном состоянии МТ.

В прототипе на стр.5 описания отмечается то, что снимают информацию о коррозионной активности грунта в месте прокладки МТ. Но подобную информацию можно получить только путем осуществления указанного выше действия /ГОСТ 51162-98 «Трубопроводы стальные магистральные. Общие требования к защите от коррозии»/.

Недостатком прототипа является недостаточно надежный контроль коррозионной активности грунта, связанный с однократным изменением абсолютных величин скоростей коррозии в различных зонах пролегания МТ.

Техническим результатом, получаемым от внедрения изобретения, является повышение надежности контроля коррозионной активности грунта в местах пролегания МТ.

Данный технический результат достигают за счет того, что в известном способе коррозионного мониторинга магистрального трубопровода с устройством катодной защиты, заключающемся в измерении величин защитных потенциалов Un трубопровода относительно соответствующих электродов сравнения в n контрольных точках, расположенных вдоль трубопровода с заданным пространственным шагом, по которым судят о коррозионном состоянии магистрального трубопровода, величины защитных потенциалов Un на контролируемом участке трубопровода измеряют многократно m раз, где m≥10, в каждой контрольной точке n через заданный интервал времени с последующим определением гистограмм распределения измеренных значений Un в каждой контрольной точке, затем, используя построенные гистограммы, определяют процентное отношение εn значений защитного потенциала к общему числу m проведенных измерений для значений Un, после чего строят гистограммы процентных отношений εn для каждой точки n, затем определяют значения εn, вышедшие за пределы заданного интервала (Uвn…Uнn) допустимых значений, где Uвn и Uнn - верхнее и нижнее допустимые значения заданного интервала допустимых значений в точке n, и при превышении в какой-либо контрольной точке значения εn заданного порогового значения εпор диагностируют наличие коррозионной опасности магистрального трубопровода в данной контрольной точке.

Многократно через заданный интервал времени измеряют значения защитного поляризационного потенциала относительно насыщенного медно-сульфатного электрода сравнения.

Интервал допустимых значений защитного поляризационного потенциала относительно насыщенного медно-сульфатного электрода сравнения задают равным (минус 0,15 - минус 0,85) В.

Многократно через заданный интервал времени измеряют значения защитного потенциала с омической составляющей, относительно насыщенного медно-сульфатного электрода сравнения.

Интервал допустимых значений защитного потенциала с омической составляющей относительно насыщенного медно-сульфатного электрода сравнения задают (минус 3,5 - минус 0,9) В.

Величину порогового значения εпор задают равной (10-20)%.

Величину пространственного шага между контрольными точками магистрального трубопровода уменьшают в местах повышенной опасности, преимущественно при переходах трубопровода через дороги или в местах пересечения трубопроводов.

Величину пространственного шага между контрольными точками магистрального трубопровода уменьшают на участках высокой коррозионной опасности, преимущественно на участках, где скорость коррозии более 0,3 мм в год.

Изобретение поясняется чертежами. На фиг.1 представлена схема системы реализации способа, на фиг.2 - гистограмма, поясняющая существо способа.

Схема системы для реализации способа (фиг.1) содержит электроды 11…1n, приваренные к МТ2, и электроды 31…3n сравнения. Электроды 1, 3 подключены к вольтметрам 41…4n, соединенным выходами с радиомодемами 51…5n. Последние связаны по радиоканалу с центром 6 коррозионного мониторинга, имеющего выход на сигнализатор 7 угрозы опасного состояния МТ2.

Трубопровод 2 подключают к установкам катодной защиты (УКЗ), в которых могут быть использованы катодные станции или другие внешние источники защитного тока (на чертеже не показаны).

Элементы и блоки 1, 3, 4, 5 образуют контрольно-измерительные пункты (КИП). Их устанавливают над осью трубопровода 2 со смещением от нее не далее 0,2 м от точки подключения электрода 1.

В случае расположения МТ2 на участке, где эксплуатация КИП затруднена, последние могут быть установлены в ближайших удобных для эксплуатации местах, но не далее 50 м от электрода 1.

Электроды 31…3n сравнения могут быть выполнены согласно ГОСТ Р51164-98 в виде медно-сульфатных электродов.

Величину пространственного шага между контрольными точками МТ2 уменьшают в местах повышения технологической опасности, например при переходах МТ2 через дороги или в местах пересечения трубопроводов.

Величину пространственного шага между контрольными точками МТ2 уменьшают также на участках высокой коррозионной опасности, например в болотистой местности, где скорость коррозии более 0,3 мм в год.

В связи с этим КИП обычно подключают к МТ2 на каждом километре, а в опасных местах через 500 м.

Способ реализуется следующим образом.

Периодически, например через 1 секунду, на КИП с помощью вольтметров 41…4n измеряют величины защитных потенциалов МТ2 относительно соответствующих электродов сравнения в n контрольных точках, расположенных вдоль контролируемого участка трубопровода. Число измерений m задают порядка сотни или тысячи.

Затем в каждой контрольной точке строят гистограммы распределения измеренных значений напряжений Unm.

После этого, приняв общее количество проведенных измерений m в каждой контрольной точке за 100%, строят гистограммы распределения измеренных значений защитного потенциала в процентных соотношениях.

На фиг.2 представлена одна из гистограмм процентного распределения защитного потенциала по различным его значениям в одной из контрольных точек. Пунктирными вертикальными линиями отмечены пределы интервала допустимых значений защитного потенциала, в данном случае заданного (минус 3,5 - минус 0,9) В.

В штатном режиме процентное соотношение значений величин защитного потенциала, выходящих за границы интервала допустимых значений, не должно превышать 20%.

Величина порогового значения εпор=(10-20)% задается исходя из многолетних наблюдений за повреждениями МТ в условиях эксплуатации при его электрохимической защите.

Конкретные значения минимального защитного потенциала относительно насыщенного медно-сульфатного электрода сравнения задаются исходя из реальных условий прокладки и эксплуатации МТ, а также исходя из требований ГОСТ Р51164.

В случае если в гистограмме распределений измеренных значений защитного потенциала процентное отношение εn значений, вышедших за пределы заданного интервала (Uвn…Uнn), превышает значение εпор, в центре 6 коррозионного мониторинга, в который по радиоканалам направляется с КИП вся информация, формируется предупредительный сигнал об угрозе опасного состояния МТ.

Таким образом в данном способе проводится объективный коррозионный мониторинг МТ, что повышает надежность контроля коррозионной активности грунта в месте прокладки и эксплуатации трубопровода.

1. Способ коррозионного мониторинга магистрального трубопровода с устройством катодной защиты, заключающийся в измерении величин защитных потенциалов Un трубопровода относительно соответствующих электродов сравнения в n контрольных точках, расположенных вдоль трубопровода с заданным пространственным шагом, по которым судят о коррозионном состоянии магистрального трубопровода, отличающийся тем, что величины защитных потенциалов Un на контролируемом участке трубопровода измеряют m раз, где m≥10, в каждой контрольной точке n с заданным периодом времени с последующим определением гистограмм распределения измеренных значений Un в каждой контрольной точке n, затем, используя построенные гистограммы, определяют процентное отношение εn значений защитного потенциала к общему числу m проведенных измерений для значений Un, после чего строят гистограммы процентных отношений εn для каждой точки n, затем определяют значения εn, вышедших за пределы заданного интервала (Uвn…Uнn) допустимых значений, где Uвn и Uнn - верхнее и нижнее допустимые значения заданного интервала допустимых значений в точке n, и при превышении в какой-либо контрольной точке значения εn заданного порогового значения sпор диагностируют наличие коррозионной опасности магистрального трубопровода в данной контрольной точке.

2. Способ по п.1, отличающийся тем, что многократно через заданный интервал времени измеряют значения защитного поляризационного потенциала относительно насыщенного медно-сульфатного электрода сравнения.

3. Способ по п.2, отличающийся тем, что интервал допустимых значений защитного поляризационного потенциала относительно насыщенного медно-сульфатного электрода сравнения задают равным (минус 0,15 - минус 0,85)В.

4. Способ по п.1, отличающийся тем, что многократно через заданный интервал времени измеряют значения защитного потенциала с омической составляющей относительно насыщенного медно-сульфатного электрода сравнения.

5. Способ по п.4, отличающийся тем, что интервал допустимых значений защитного потенциала с омической составляющей относительно насыщенного медно-сульфатного электрода сравнения задают (минус 3,5 - минус 0,9)В.

6. Способ по п.1, отличающийся тем, что величину порогового значения εпор задают равной (10-20)%.

7. Способ по п.1, отличающийся тем, что величину пространственного шага между контрольными точками магистрального трубопровода уменьшают в местах повышенной опасности преимущественно при переходах трубопровода через дороги или в местах пересечения трубопроводов.

8. Способ по п.1, отличающийся тем, что величину пространственного шага между контрольными точками магистрального трубопровода уменьшают на участках высокой коррозионной опасности, преимущественно на участках, где скорость коррозии - более 0,3 мм в год.



 

Похожие патенты:

Изобретение относится к трубопроводному транспорту, а именно к устройствам запуска и приема поточных средств в трубопровод. .

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для ввода химического реагента в текущий поток в трубопроводе. .

Изобретение относится к системам контроля, управления, сигнализации и наблюдения за расходом газа на газопроводах для жилищно-коммунального хозяйства. .

Изобретение относится к области дозирования реагента в трубопроводы в теплотехнических и гидравлических системах (паровые и водогрейные котлы, бойлеры, тепловые сети и системы горячего водоснабжения).

Изобретение относится к трубопроводному транспорту. .

Изобретение относится к области насосо- и компрессоростроения, а именно к установкам для дозированного ввода химреагентов в транспортируемый природный газ, и может быть использовано в газовой промышленности на газораспределительных станциях для подачи одоранта в поток газа с целью придания ему запаха.

Изобретение относится к нефтедобывающей промышленности, а именно к системам заводнения пластов и поддержания пластового давления при разработке нефтяных месторождений.

Изобретение относится к трубопроводному транспорту, а именно к способам и установкам для дозированного ввода химреагентов в транспортируемый природный газ, и может быть использовано в газовой промышленности на газораспределительных станциях для подачи одоранта в поток газа с целью придания ему запаха.
Изобретение относится к теплоэнергетике и может быть использовано для очистки и защиты от накипи и коррозии внутренних поверхностей нагрева или теплообмена водогрейных и паровых котлов и теплообменников, бойлерных установок, испарителей, теплотрасс, систем отопления жилых домов и промышленных объектов, систем охлаждения двигателей внутреннего сгорания в процессе текущей эксплуатации.

Изобретение относится к области добычи газа и газоконденсата и касается вопроса повышения производительности добычных скважин. .

Изобретение относится к области нефтегазодобывающей промышленности и может быть использовано при эксплуатации компрессорных станций

Изобретение относится к технике дозирования, касается дозировочных насосных агрегатов

Изобретение относится к трубопроводному транспорту, предназначено для очистки внутренней поверхности трубопроводов без остановки перекачки

Изобретение относится к измерительной технике и прикладной метрологии

Изобретение относится к устройствам для определения расхода газообразных сред и может быть использовано в газовых сетях промышленных и коммунальных предприятий для учета при коммерческих операциях

Изобретение относится к строительству и эксплуатации магистральных нефтепроводов

Изобретение относится к строительству и эксплуатации магистральных нефтепроводов и может быть использовано для удаления содержащейся в добываемой нефти воды из нефтепровода на его начальном участке

Изобретение относится к машиностроению, в частности к экспериментальной гидравлике, и может быть использовано в стендах для гидравлических исследований методов оценок измерения массового расхода скважинной жидкости, включающей, по крайней мере, четыре компонента - нефть, вода, газ, взвешенные частицы при различных температурах, давлениях, плотностях смеси

Изобретение относится к области гидравлики и предназначено для контроля баланса на участке магистрального трубопровода, проложенного как на суше, так и в водной среде
Наверх