Способ установки первичного преобразователя шарикового расходомера

Авторы патента:


Способ установки первичного преобразователя шарикового расходомера
Способ установки первичного преобразователя шарикового расходомера

 


Владельцы патента RU 2422775:

Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (RU)

Изобретение предназначено для использования при измерении расхода воды в топливных каналах реактора большой мощности (РБМК) штатным прибором - шариковым расходомером. Первичный преобразователь расходомера, включающий в себя корпус (4) магнитоиндукционного преобразователя, втулку (12) с камерой вращения (5), в которой расположен шарик (13), струевыпрямитель (10) и шнек (14), располагают таким образом, что присоединенный к корпусу (11) датчика подводящий трубопровод и струевыпрямитель (10) находятся ниже камеры вращения (5) шарика, а отводящий измеряемую среду трубопровод и шнек (14) находятся выше камеры вращения (5). Изобретение позволяет повысить надежность и долговечность первичного преобразователя шарикового расходомера благодаря улучшению условий охлаждения шарика в процессе работы расходомера за счет удаления из камеры вращения газовой фазы. 2 ил.

 

Используемые аббревиатуры:

ШАДР-32М - первичный преобразователь шарикового расходомера ШТОРМ-32М.

ШАДР - шариковый датчик расходомера.

ШТОРМ-32М - шариковый расходомер, датчиком которого является ШАДР-32М.

РБМК - реактор большой мощности канальный.

ЗРК - запорно-регулирующий клапан.

ЗРК - ШАДР-32М - узел в напорно-водяных коммуникациях контура многократной принудительной циркуляции, содержащий ЗРК и первичный преобразователь шарикового расходомера ШТОРМ-32М.

КМПЦ - контур многократной принудительной циркуляции.

НВК - напорно-водяные коммуникации.

МИП - магнитоиндукционный преобразователь первичного преобразователя шарикового расходомера.

Изобретение относится к способам повышения надежности и долговечности первичного преобразователя ШАДР-32М шарикового расходомера ШТОРМ-32М, являющегося штатным прибором измерения расхода воды в топливных каналах РБМК. Указанный первичный преобразователь (ШАДР-32М) шарикового расходомера (ШТОРМ-32М) является штатным прибором измерения расхода воды в топливных каналах РБМК.

Принцип действия первичного преобразователя ШАДР состоит в том, что поток теплоносителя, проходя через струевыпрямитель (поз.10 на Фигуре 1), при натекании на закручивающее устройство - трехлопастной шнек (поз.14 на Фигуре 1) приобретает винтообразное движение. Окружная составляющая скорости измеряемого потока воздействует на чувствительный элемент - шар (поз.13 на Фигуре 1) и приводит его во вращательное движение вокруг продольной оси преобразователя. Угловая скорость вращения шара, пропорциональная объемному расходу, при помощи магнитного индукционного преобразователя (МИП), основными элементами которого являются постоянный магнит и катушка (поз.2 и 3 на Фигуре 1), преобразуется в электрический импульсный сигнал. Сигнал МИП по линии связи поступает на вход устройства, преобразующего этот сигнал в напряжение (ЭДС) постоянного тока. Частоте следования импульсов ЭДС МИП путем тарировок на специальных поверочных стендах ставится в соответствие объемный расход воды через МИП расходомера.

Известное техническое решение - патент РФ №2201578, МПК G01F 1/05, G01F 1/10, 09.10.2000 «ДАТЧИК ТАХОМЕТРИЧЕСКОГО ШАРИКОВОГО РАСХОДОМЕРА (ВАРИАНТЫ)» - относится к приборостроению и может использоваться в химической, нефтяной, нефтехимической отрасли промышленности, а также в ядерной энергетике и медицине. Датчик расходомера, содержащий корпус, в полости которого размещены последовательно конфузор, обособленная камера шара, лопатки завихрителя, вихревая камера и диффузор, снабжен дренажным каналом с регулировочным вентилем, который соединяет обособленную камеру шара с отверстиями в стенках диффузора, что дает возможность изменять интенсивность дренажного расхода и тем самым регулировать градуировочный коэффициент датчика, изменять диапазон измерений и удалять из обособленной полости шара посторонние включения.

Ресурс расходомеров определяется в основном степенью износа шара и кольцевой камеры, в которой вращается шар. Как показывает опыт эксплуатации РБМК, происходят отказы первичных преобразователей шариковых расходомеров ШАДР-32М особенно в условиях разогрева реактора после его останова, сопровождающиеся изменением формы шара расходомера вследствие пластических деформаций.

Деформации шара происходят вследствие высокой температуры шара, возникающей из-за ухудшения условий отвода тепла, выделяющегося в шаре. Шар нагревается при трении о стенки камеры, в которой он вращается, и токами Фуко, генерируемыми в шаре при его вращении в магнитном поле (А.И.Достов. Диагностика резонансных явлений в напорном тракте РБМК, препринт РНЦ «Курчатовский институт», ИАЭ-6467/4, 2007).

Ухудшение условий охлаждения шара возможно в том случае, если в объеме камеры вращения шара будет преобладать газовая фаза. С большой вероятностью можно утверждать, что газовая фаза присутствует в камере вращения шара всегда, поскольку конструкция первичного преобразователя и узла ЗРК-ШАДР-32М такова, что камера образует тупиковую емкость, из которой газовая фаза выйти не может (поз.5 на Фигуре 1). Появление газовой фазы в камере может происходить из-за наличия в циркулирующем теплоносителе воздуха, продуктов радиолиза воды и деления топлива (аргон, криптон и др.), а также паров воды. Таким образом, в конструкции МИП ШАДР-32М нарушен один из важных принципов конструирования трубопроводных систем - избегать не дренируемых тупиковых емкостей, если они специально не предусмотрены проектом. В данном случае положительная целесообразность организации тупиковой емкости не просматривается.

Практика эксплуатации РБМК показывает, что возможны отказы ШАДР-32М, фиксируемые по сигналам снижения расхода воды в соответствии с показаниями расходомеров ШТОРМ-32М, при изменении режимных параметров теплоносителя в КМПЦ - давления теплоносителя, температуры насыщения теплоносителя, соответствующей данному давлению, а также амплитуды пульсаций давления в контуре. При некоторых режимных параметрах теплоносителя пульсации большой интенсивности приводят к тому, что теплоноситель в камере, где вращается шарик (поз.5 и 13 соответственно на Фигуре 1), будет находиться в состоянии насыщения. При этом камера заполняется насыщенным паром. В условиях застойной газовой фазы условия теплоотдачи от шара резко ухудшаются и шар нагревается до высоких температур.

Изменение формы шара и плотности среды в камере вращения шара приводят к изменению скорости вращения шара и тем самым к нарушению соответствия скорости вращения шара показаниям прибора, полученным при тарировке расходомера, что является причиной неправильного измерения расхода теплоносителя.

Указанное известное решение: опыт практической эксплуатации РБМК, характерные явления при отказах ШАДР-32М, связанные с возникновением газовой фазы в камере вращения шара, могут рассматриваться в качестве прототипа к заявленному (Интернет, http://www.staroruspribor.ru/catalog/1140/).

Для устранения указанных выше недостатков при эксплуатации узла ШАДР-32М в напорно-водяных коммуникациях тракта РБМК предлагается кардинальное повышение надежности ШАДР-32М, не требующее изменения самой конструкции узла ШАДР-32М.

По мнению заявителя, указанное решение может рассматриваться в качестве прототипа к заявленному.

Техническим результатом, на который направлено изобретение, является повышение надежности и долговечности ШАДР-32М путем изменения монтажа (ориентации расположения) упомянутого узла ШАДР-32М в НВК РБМК, таким образом, чтобы обеспечить эвакуацию газовой фазы из камеры при всех режимах работы ШАДР-32М.

Для этого предложен способ изменения монтажа узла ШАДР-32М путем изменения направления потока среды относительно расположения элементов датчика вдоль его вертикальной оси, при этом конструкция самого ШАДР-32М остается прежней.

Реализация предлагаемого технического решения обеспечивается использованием совокупности существенных признаков, охарактеризованной следующим образом.

Способ установки первичного преобразователя шарикового расходомера, включающий гидравлическое присоединение подводящего и отводящего измеряемую среду трубопроводов к размещенным вдоль вертикальной оси в корпусе датчика с противоположных сторон от камеры вращения шарика, струевыпрямителю и шнеку, причем подводящий измеряемую среду трубопровод и струевыпрямитель располагают ниже камеры вращения шарика, а отводящий измеряемую среду трубопровод и шнек располагают выше камеры вращения шарика.

На фиг.1 показано пространственное положение корпуса датчика для присоединения к подводящему и отводящему измеряемую среду трубопроводам, когда подводящий измеряемую среду трубопровод и струевыпрямитель расположены выше камеры вращения шарика, а отводящий измеряемую среду трубопровод и шнек расположены ниже камеры вращения шарика (согласно прототипу).

На фиг.2, в соответствии с предложенным решением, показано пространственное положение корпуса датчика для присоединения к подводящему и отводящему измеряемую среду трубопроводам, когда подводящий измеряемую среду трубопровод и струевыпрямитель расположены ниже камеры вращения шарика, а отводящий измеряемую среду трубопровод и шнек расположены выше камеры вращения шарика.

На прилагаемых фигурах (Фигура 1 и Фигура 2) позициями для пояснения данного предложения обозначены:

1 - защелка МИП;

2 - постоянный магнит;

3 - катушка МИП;

4 - корпус МИП;

5 - камера вращения шара;

6 - прокладка;

7 - штифт;

8 - прочный корпус;

9 - корпус датчика;

10 - струевыпрямитель;

11 - корпус датчика;

12 - втулка;

13 - шарик;

14 - шнек;

15 - гайка.

Пояснения к предложенному решению (Фигура 2) состоят в том, что имеющийся узел, включающий корпус 4 (МИП), втулку 12 с камерой вращения 5, образованной между поверхностью втулки 12 и поверхностью корпуса датчика 11, шариком 13, расположенным в камере вращения 5 с присоединенными к элементам 10 (струевыпрямитель) и 14 (шнек) корпуса датчика 11 трубопроводами, подводящим измеряемую среду и отводящим измеряемую среду, располагают таким образом, что присоединенный к корпусу датчика 11 трубопровод, подводящий измеряемую среду, и соединенный с ним струевыпрямитель 10, находятся ниже камеры вращения 5 шарика 13, а трубопровод, отводящий измеряемую среду, и соединенный с ним шнек 14 находятся выше камеры вращения 5 шарика 13.

Таким образом, имевшиеся ранее при некоторых режимных параметрах теплоносителя пульсации давления большой интенсивности приводили к тому, что теплоноситель в камере, где вращался шарик, находился в состоянии насыщения, при этом камера вращения шара заполнялась насыщенным паром. В указанных условиях застойной газовой фазы условия теплоотдачи от шара резко ухудшались, и шар нагревался до высоких температур, что соответственно приводило к изменению формы шара, снижало надежность, долговечность конструкции и точность измерения расхода. Уменьшение плотности среды в камере и изменение формы шара под действием пластических деформаций изменяло скорость вращения шара при фиксированном расходе воды через ШАДР-32М, нарушая тем самым соответствие скорости вращения шара показаниям прибора, полученным при тарировке расходомера, что и является причиной неправильного измерения расхода.

Предложенным решением указанные негативные явления исключаются, поскольку газовая фаза, существование которой в камере обусловлено наличием воздуха, продуктов радиолиза воды и деления топлива, а также запариванием камеры вследствие пульсаций давления в камере, эвакуируется из камеры вращения шара под действием Архимедовых сил.

Способ установки первичного преобразователя шарикового расходомера, включающий гидравлическое присоединение подводящего и отводящего измеряемую среду трубопроводов к размещенным вдоль вертикальной оси в корпусе датчика с противоположных сторон от камеры вращения шарика струевыпрямителю и шнеку, отличающийся тем, что первичный преобразователь шарикового расходомера и трубопроводы устанавливают таким образом, что подводящий измеряемую среду трубопровод и струевыпрямитель располагаются ниже камеры вращения шарика, а отводящий измеряемую среду трубопровод и шнек располагаются выше камеры вращения шарика.



 

Похожие патенты:

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике и предназначено для измерения расхода жидкостей и газов в напорных трубопроводах, например переменно-направленных расходов в трубопроводах поршневых насосов.

Изобретение относится к приборам, предназначенным для измерения расхода жидкости, транспортируемой по трубопроводу. .

Изобретение относится к области приборостроения, в частности к приборам для измерения количества прошедшей среды. .

Изобретение относится к приборостроению, в частности к области измерения расхода жидкости в тяжелых эксплутационных условиях. .

Изобретение относится к измерительной технике и может быть использовано в водоснабжении для измерения количества воды. .

Изобретение относится к устройствам для измерения расхода жидкости путем пропуска ее через измерительные устройства непрерывным потоком с помощью вращающихся лопаток с магнитной или электромагнитной связью с индикаторным прибором.

Изобретение относится к измерительной технике, в частности к приборам, измеряющим расход жидкостей

Использование относится к измерительной технике и может использоваться для измерения расхода любых электропроводных и неэлектропроводных, агрессивных и токсичных, огне- и взрывоопасных жидкостей в химической, нефтеперерабатывающей, фармакологической и других отраслях промышленности. Узел съема электрического сигнала содержит светоизлучатель и фотоприемник, связанные между собой прямой оптической и обратной электронной положительной связями и размещенные непосредственно в зоне кольцевого канала так, чтобы вращающийся шарик мог пересекать оптическую ось «светоизлучатель-фотоприемник», или светоизлучатель и фотоприемник размещены во вторичном электронном преобразователе и оптически связаны с кольцевым каналом первичного преобразователя посредством оптоволоконного волновода. Технический результат - получение импульсного выходного сигнала с достаточной крутизной фронтов и стабильной амплитудой, не зависящего от вида жидкости, ее температуры и давления, не подверженного искажению электрическими, магнитными и электромагнитными полями. 2 н.п. ф-лы, 5 ил.

Изобретение относится к области измерения объема (расхода) газа, протекающего по трубопроводам и поступающего к потребителю под относительно низким давлением (от 0,05 кг/см2) с расходом от 0,01 до 15 м3/час. Изобретение может быть использовано в системе газоснабжения коммунального хозяйства и предприятий, а также в быту для индивидуальных потребителей. Счетчик газа - расходомер, содержащий корпус с входным и выходным патрубками, последовательно соединенные между собой входную, промежуточную и выходную полости, чувствительный элемент в виде конуса с валом, на котором закреплена турбинка, наружная поверхность конуса снабжена пазами, выполненными по винтовой линии, а также содержащий опору конуса, выполненную с конической поверхностью, обращенной к конусу, основание с радиальными отверстиями, относительно которого турбинка установлена с зазором, и регистрирующее устройство, снабжен стаканом, сопряженным с корпусом посредством шарового шарнирного соединения, при этом регистрирующее устройство, опора конуса и основание с радиальными отверстиями размещены внутри стакана и жестко с ним соединены; корпус может быть выполнен из двух отдельных частей - верхней, содержащей стакан с расположенными в нем элементами, и нижней, содержащей входной и выходной патрубки. Технический результат - уменьшение погрешности измерений при отклонении устройства при его установке от заданного положения. 1 з.п. ф-лы, 8 ил.

Изобретение относится к измерительной технике и может использоваться в расходометрии любых электропроводных жидкостей в химической, фармацевтической, пищевой и других областях промышленности, в жилищно-коммунальном хозяйстве в автоматических системах учета потребления холодной и горячей воды в составе теплосчетчика. Шариковый первичный преобразователь расхода электропроводной жидкости состоит из цилиндрического корпуса с кольцевым каналом, в котором свободно может вращаться шарик, выполненный из диэлектрического материала с нулевой плавучестью в жидкости, неподвижного струенаправляющего аппарата, узла съема электрического сигнала и установленных в кольцевом канале и в плоскости качения шарика трех электродов, из которых средний электрод подключен к выходу, а два других электрода соединены с инвертирующим и неинвертирующим входами операционного усилителя, чтобы электрические сопротивления жидкости между средним электродом и двумя другими электродами вместе с двумя вспомогательными резисторами образовывали положительную и отрицательную обратные связи, охватывающие операционный усилитель и управляемые вращающимся шариком. Технический результат − независимость режима работы узла съема выходного сигнала, амплитуды и крутизны фронтов выходных прямоугольных импульсов от вида и параметров жидкости, температуры в том числе, высокая крутизна фронтов выходных импульсов даже при очень низких расходах жидкости, подавление электролиза и других электрохимических процессов в зоне электрического контакта электродов с жидкостью; исключение необходимости предварительной настройки преобразователя под конкретный вид жидкости с заданными параметрами и условия эксплуатации первичного преобразователя, снижение требований к материалу электродов и увеличенный срок эксплуатации преобразователя. 3 ил.

Изобретение относится к области исследований скважин, в частности к способам нахождения расхода скважинной жидкости с использованием некалиброванного расходомера с линейной зависимостью показаний от расхода (например, турбинного или электромагнитного), и может быть использовано при разработке и контроле нефтяных месторождений, а также при измерении расхода жидкости в трубопроводах. Способ измерения расхода жидкости в работающей скважине или трубопроводе включает регистрацию показаний и скорости перемещения некалиброванного расходомера при его движении вдоль исследуемого интервала. Для вычисления скорости движения скважинной жидкости на каждом i-ом участке исследуемого интервала перемещают расходомер с j различными, но постоянными скоростями, затем для каждого i-го участка находят коэффициенты линейной аппроксимации К0i, К1i уравнения вида Nij=K1i*Uij+K0i, где Nij - показания некалиброваного расходомера, условные единицы; Uij - скорость перемещения расходомера внутри скважины, м/ч. Для каждого i-го участка исследуемого интервала вычисляют расход жидкости в скважине (трубопроводе) по формуле Qi=Si*K0i/K1i, где Si - площадь сечения потока, м2. Технический результат - упрощение процесса нахождения расхода, а следовательно, снижение технических затрат. 2 табл.

Изобретение предназначено для использования в устройствах измерения расхода горячей воды. Крыльчатка счетчика горячей воды содержит ведущую магнитную полумуфту, помещенную в герметичный контейнер из немагнитного материала, заполненный магнитной жидкостью. Технический результат - прямо пропорциональная зависимость скорости вращения ведомой полумуфты от температуры воды, проходящей через счетчик. 1 ил.
Наверх