Способ имитационного моделирования электромагнитных расходомеров жидких металлов

Изобретение может быть использовано при эксплуатации энергетических установок с жидкометаллическим теплоносителем. Магнитное поле электромагнитного расходомера, имеющего трубу (1) из немагнитного материала (нержавеющей стали), к наружной поверхности которой приварены два электрода (2), преобразуют в электрическое напряжение с помощью индукционной катушки, помещаемой в канал трубы (1). Интегрируют электрическое напряжение, полученное на выходных клеммах индукционной катушки, и определяют коэффициент преобразования Кр расходомера. При этом через электроды пропускают ток I, по частоте и фазе равный току I0, питающему индуктор расходомера, а по величине определяемый выражением где D - диаметр канала трубы (1), Rem - магнитное число Рейнольдса, R - электрическое сопротивление пустой трубы между электродами, µ0 - магнитная проницаемость жидкого металла, σ - электропроводность жидкого металла. Изобретение расширяет диапазон имитационного моделирования электромагнитных расходомеров, что обеспечивает возможность поверки при режимах, соответствующих высоким магнитным числам Рейнольдса (Rem>1). 1 ил.

 

Предлагаемое изобретение относится к приборостроению, а именно к технике измерения расхода жидких металлов с помощью электромагнитных расходомеров, к технике их имитационного моделирования. Измерение расхода жидких металлов необходимо, например, при эксплуатации энергетических установок, где жидкий металл используется в качестве теплоносителя.

Известны электромагнитные расходомеры жидких металлов, принцип действия которых основан на законе электромагнитной индукции [1]. Электромагнитный расходомер имеет: трубу из нержавеющей стали (без изоляционного покрытия внутренней поверхности трубы), два электрода, приваренных к наружной поверхности стенки трубы, и индуктор, создающий низкочастотное импульсное магнитное поле в рабочей зоне канала.

Известно [1], что электромагнитные расходомеры, предназначенные для измерения расхода сред с высокой электропроводностью, в частности жидких металлов, чувствительны к изменению магнитного числа Рейнольдса (Rem)

где V - средняя скорость потока жидкого металла, D - диаметр канала, µ0 - магнитная проницаемость жидкого металла, σ - электропроводность жидкого металла. При Rem>1 возникает известный эффект - снос (смещение) магнитного поля возбуждения в направлении движения потока жидкого металла.

При движении жидкого металла по трубе, в нем, в результате взаимодействия с магнитным полем индуктора, на границах рабочей зоны, т.е. зоны магнитного поля в канале, образуются циркуляционные токи, создающие свои магнитные поля, причем величина циркуляционных токов и соответственно величина создаваемых ими магнитных полей пропорциональны магнитному числу Рейнольдса. По направлению движения жидкого металла на входе в рабочую зону расходомера магнитное поле циркуляционных токов направлено навстречу магнитному полю индуктора, а на выходе из рабочей зоны расходомера магнитное поле циркуляционных токов направлено согласно с магнитным полем индуктора. Таким образом, суммарное магнитное поле циркуляционных токов и индуктора оказывается практически таким же, как магнитное поле индуктора, но смещено на некоторую величину вдоль оси канала, в направлении движения потока жидкого металла. Причем, чем меньше протяженность магнитного поля возбуждения вдоль оси канала, тем значительнее в центральном сечении канала изменение магнитного поля возбуждения и его влияние на показания расходомера. Практически все электромагнитные расходомеры жидкого металла имеют магнитное поле, распределенное вдоль оси канала, на протяжении, приблизительно равном одному диаметру трубы, поскольку такое магнитное поле обеспечивает оптимальные характеристики прибора: максимальную чувствительность при минимальном потреблении энергии для создания магнитного поля. Смещение магнитного поля может вызвать изменение коэффициента преобразования расходомера и внести ошибку в показания прибора.

Сложность исследования расходомеров жидких металлов на проливных стендах вынуждает искать иные, т.е. беспроливные способы исследования расходомеров, в частности способы имитационного моделирования.

Известен способ [2] имитационного моделирования электромагнитных расходомеров ионных жидкостей, т.е. жидкостей, электропроводность которых на несколько порядков ниже, чем электропроводность жидких металлов, поэтому при измерении расхода ионных жидкостей циркуляционные токи и их магнитные поля незначительны, а магнитное число Рейнольдса всегда много меньше единицы. Известный способ [2] предусматривает преобразование магнитного поля расходомера в электрическое напряжение с помощью индукционной катушки, помещаемой в канал, интегрирование электрического напряжения, полученного на выходных клеммах индукционной катушки, и определение коэффициента преобразования расходомера Кp. Коэффициент преобразования Кp определяется выражением

где U - напряжение между электродами, I0 - ток возбуждения магнитного поля индуктором, Q - объемный расход жидкого металла, равный

Индукционная катушка выполнена в виде плоской многослойной печатной платы, причем витки катушки размещены вдоль линий равного значения весовой функции [3]. Индукционная катушка размещается в канале моделируемого расходомера в плоскости оси канала и линии, соединяющей электроды. Причем одна из осей симметрии индукционной катушки совпадает с линией, соединяющей электроды расходомера.

Недостатком известного способа является невозможность моделировать зависимость коэффициента преобразования электромагнитного расходомера от изменения магнитного числа Рейнольдса.

Способ имитационного моделирования [2] является наиболее близким прототипом предлагаемого изобретения.

Целью предлагаемого изобретения является создание способа имитационного моделирования работы электромагнитных расходомеров при любых числах Rem, практически встречающихся в практике измерения расхода жидких металлов.

Эта цель достигается пропусканием электрического тока через электроды в пустую трубу расходомера. Ток I, пропускаемый через электроды и стенку пустой трубы, создает напряжение между электродами, равное

где R - электрическое сопротивление трубы между электродами.

Ток, растекаясь по стенке трубы, занимает вдоль ее оси область порядка одного диаметра трубы. При этом магнитное поле, образуемое током, создает эффект смещения магнитного поля индуктора.

Для того чтобы обеспечить смещение магнитного поля аналогичное, вызываемому магнитным числом Рейнольдса, полярность тока I должна соответствовать полярности сигнала, возбуждаемого между электродами, если бы по каналу протекал жидкий металл в заданном направлении, а частота и фаза тока должны быть одинаковыми с соответствующими параметрами тока питания индуктора I0. При этом связь величины тока I с Rem должна соответствовать выражению (5), полученному из совместного решения уравнений (1)-(4).

Чертеж поясняет формирование магнитного поля в пустом канале расходомера с помощью тока I0 индуктора и тока I, пропускаемого через электроды. На чертеже изображена труба 1, к наружной поверхности которой приварены электроды 2. К электродам 2 подведен ток I. Линиями 3 показано распределение тока I в стенке трубы. Крестиками и точками показано направление магнитного поля, образованное током I, который создается регулируемым источником 4. Крестики указывают направление магнитного поля в плоскость чертежа, а точки - направление магнитного поля из плоскости чертежа. Таким образом, ток I создает магнитное поле, которое, суммируясь с магнитным полем индуктора, смещает магнитное поле индуктора вдоль оси канала в направлении предполагаемого движения потока измеряемой жидкости. На чертеже изображена диаграмма распределения магнитного поля вдоль оси канала при двух режимах, 5 - когда ток I=0, т.е. имитируется Rem=0, и 6 - когда ток I соответствует некоторому значению Rem>1.

Оценка влияния магнитного числа Рейнольдса на коэффициент преобразования расходомера производится следующим образом. Магнитное поле в рабочей зоне канала, сформированное токами I0 и 7, преобразуется в электрическое напряжение с помощью индукционной катушки, помещенной в канал. Индукционная катушка размещается в канале моделируемого расходомера в плоскости оси канала и линии, соединяющей электроды. Причем одна из осей симметрии индукционной катушки совпадает с линией, соединяющей электроды расходомера. Производится интегрирование электрического напряжения, полученного на выходных клеммах индукционной катушки, и определение коэффициента преобразования (KpR) расходомера, соответствующего заданному магнитному числу Рейнольдса. Для этого ток I устанавливается равным значению, вычисленному по формуле (5).

Величина ε, характеризующая относительное изменение коэффициента преобразования расходомера, вызванное изменением магнитного числа Рейнольдса от нулевого до заданного значения, соответствующего току I, равна

Предлагаемый способ имитационного моделирования электромагнитного расходомера жидких металлов позволяет также измерить относительное смещение магнитного поля, вызванное изменением магнитного числа Рейнольдса. Например, необходимо измерить величину смещения магнитного поля при изменении магнитного числа Рейнольдса от значения Rem1 до значения Rem2, при условии Rem1<Rem2.

Для этого устанавливают ток I1, соответствующий Rem1 согласно выражению (5) и измеряют коэффициент преобразования КpRI,. Затем устанавливают ток I2 соответствующий Rem2. Смещают имитационную катушку вдоль оси канала, по направлению предполагаемого движения жидкого металла на некоторую величину. Измеряют коэффициент КpR2 Итеративным методом находят положение индукционной катушки, при котором измеренный коэффициент преобразования КрR2 окажется равным КpR1. В этом случае, величина смещения магнитного поля, вызванная изменением магнитного числа Рейнолдса от Rem1 до Rem2, равна смещению индукционной катушки вдоль оси канала.

Технический результат, который может быть получен при осуществлении изобретения, состоит в повышении точности имитационного моделирования электромагнитных расходомеров при режимах, соответствующих высоким магнитным числам Рейнольдса (Rem>1), и может использоваться для поверки расходомеров имитационным методом.

Источники информации

1. Кремлевский П.П. Измерение расхода многофазных потоков. Издательство «Машиностроение», Ленинград, 1982 г., 214 с.

2. Патент RU 2146042 C1, 7 G01F 25/00, Бюллетень №6, 2000.

3. Авторское свидетельство СССР, №627343, кл. G01F 25/00, Бюллетень №37, 1978.

Способ моделирования работы электромагнитных расходомеров жидких металлов при их поверке имитационным методом, причем электромагнитный расходомер имеет трубу из нержавеющей стали без изоляционного покрытия внутренней поверхности, два электрода, приваренных к наружной поверхности стенки трубы, и индуктор, питаемый током I0, создающим низкочастотное магнитное поле в рабочей зоне канала трубы; включающий преобразование магнитного поля расходомера в электрическое напряжение с помощью индукционной катушки, помещенной в указанный канал в плоскости оси канала и линии, соединяющей указанные электроды, интегрирование электрического напряжения, полученного на выходных клеммах индукционной катушки, и определение коэффициента преобразования расходомера Кр, отличающийся тем, что через электроды пропускают ток I, по частоте и фазе равный току индуктора I0, а по величине определяемый выражением
где D - диаметр канала, Rem - магнитное число Рейнольдса, R - электрическое сопротивление пустой трубы между электродами, µ0 - магнитная проницаемость жидкого металла, σ - электропроводность жидкого металла.



 

Похожие патенты:

Изобретение относится к магнитно-индуктивному расходомеру с измерительной трубой, в которой среда протекает по существу в направлении оси измерительной трубы, магнитным устройством, которое генерирует пронизывающее измерительную трубу по существу вертикально к ее оси изменяющееся магнитное поле, двумя по существу по соединительной линии расположенными измерительными электродами, причем соединительная линия проходит по существу вертикально к оси измерительной трубы и магнитному полю, и регулирующим/обрабатывающим данные устройством, которое на основании измеренного на измерительных электродах напряжения определяет объем или массу протекающей по измерительной трубе среды.

Изобретение относится к измерительной технике и может быть использовано на топливных складах или нефтебазах, осуществляющих операции приема, хранения и отпуска нефтепродуктов.

Изобретение относится к способу измерения, по меньшей мере, одного физического параметра потока, в частности весового расхода и/или плотности и/или вязкости протекающей в трубопроводе двух- или многофазной среды, а также к пригодной для этого измерительной системе.

Изобретение относится к области приборостроения, а именно к технике измерения расхода с помощью электромагнитных расходомеров, их поверки имитационным способом. .

Изобретение относится к встроенному измерительному прибору с измерительным датчиком вибрационного типа, в частности к измерительному прибору кориолисова массового расхода/плотности для протекающей в трубопроводе, в частности, двух- или многофазной среды, а также к способу для выработки выражающего собой физическую измеряемую величину среды, к примеру массовый расход, плотность и/или вязкость среды, измеренного значения посредством такого измерительного датчика.

Изобретение относится к устройству проверки расходомера и к способу проверки расходомера на месте в реальных условиях его эксплуатации. .

Изобретение относится к магнитоиндуктивному расходомеру, таким образом к устройству для измерения объемного или массового расхода среды, протекающей через измерительную трубу в направлении оси измерительной трубы, содержащему систему магнитов, генерирующую проходящее через измерительную трубу магнитное поле, в основном поперек оси измерительной трубы, с, по меньшей мере, одним измерительным электродом, который определенным участком поверхности контактирует со средой, и с блоком регулирования/обработки, который информирует об объемном или массовом расходе среды посредством измеряемого напряжения, наведенного в, по меньшей мере, одном измерительном электроде.

Изобретение относится к магнитно-индуктивному измерительному преобразователю с измерительной трубой, по которой протекает электропроводящая текучая среда. .

Изобретение относится к измерительному прибору, встроенному в трубопровод, в частности расходомеру, предназначенному для измерения потока текучей среды в трубопроводе, при этом установленный в трубе измерительный прибор содержит, в частности, магнитоиндукционный измерительный датчик с расположенной по ходу трубопровода, снабженной внутри футеровкой измерительной трубой для направления измеряемой текучей среды, при этом футеровка состоит из полиуретана, изготовленного с применением катализатора, содержащего металлоорганические соединения.

Изобретение относится к магнитно-индуктивному расходомеру с измерительной трубой. .

Изобретение относится к датчику расходомера и соединительному элементу. .

Изобретение относится к магнитно-индуктивному расходомеру, предназначенному для измерения потока среды (11), протекающей через измерительную трубку (2) с магнитной системой в виде катушек (6, 7), измерительными электродами (4, 5) и опорным электродом (17), находящимся под определенным потенциалом.

Изобретение относится к устройству для измерения объемного или массового потока среды в трубопроводе с измерительной трубой, в которой проходит поток среды в направлении оси измерительной трубы, и которая с помощью двух закрепленных на трубопроводе фланцев трубопровода установлена в трубопроводе, причем измерительная труба окантована на своих концевых областях или измерительная труба на обеих своих концевых областях имеет соответственно фланец измерительной трубы, причем между окантованной концевой областью или фланцем измерительной трубы и соответствующим фланцем трубопровода предусмотрен заземляющий диск, с помощью которого среда подключена к опорному потенциалу, с магнитной системой, которая создает магнитное поле, пронизывающее измерительную трубу, проходящее в основном поперек к оси измерительной трубы, с, по меньшей мере, одним соединенным со средой измерительным электродом, который расположен в лежащей в основном перпендикулярно к магнитному полю области измерительной трубы, и с блоком регулирования/обработки, который с помощью измеряемого напряжения, индуцированного в, по меньшей мере, одном измерительном электроде, поставляет информацию об объемном или массовом потоке среды в измерительной трубе.

Изобретение относится к магнитно-индуктивному расходомеру с измерительной трубой, в которой среда протекает по существу в направлении оси измерительной трубы, магнитным устройством, которое генерирует пронизывающее измерительную трубу по существу вертикально к ее оси изменяющееся магнитное поле, двумя по существу по соединительной линии расположенными измерительными электродами, причем соединительная линия проходит по существу вертикально к оси измерительной трубы и магнитному полю, и регулирующим/обрабатывающим данные устройством, которое на основании измеренного на измерительных электродах напряжения определяет объем или массу протекающей по измерительной трубе среды.

Изобретение относится к способу и устройству для измерения объемного или массового потока среды, протекающей через магнитоиндуктивный расходомер с заданным номинальным внутренним диаметром.

Изобретение относится к электромагнитным расходомерам, в частности к конструкции элементов датчика расхода таких расходомеров и может использоваться в трубах с различным (в том числе малым) диаметром условного прохода в нефтегазовой, химической, пищевой промышленности, в коммунальном хозяйстве и т.п.
Наверх