Многокомпонентный датчик перемещений



Многокомпонентный датчик перемещений
Многокомпонентный датчик перемещений
Многокомпонентный датчик перемещений

 


Владельцы патента RU 2422785:

Государственное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) (RU)

Изобретение относится к измерительной технике, в частности к устройствам для измерения деформаций и перемещений и предназначено для измерения статических или плавно меняющихся радиальных перемещений. Техническим результатом изобретения является расширение функциональных возможностей устройства. Многокомпонентный датчик радиальных перемещений содержит корпус, чувствительный элемент с тензодатчиками. Датчик снабжен силоприемным элементом, выполненным в виде упругого цилиндрического стержня, жестко защемленного во внутренней проточке корпуса датчика. Чувствительный элемент выполнен в виде двух полых конусов, сопряженных своими основаниями большого диаметра с цилиндрическим кольцом и разрезанных по образующим на ряд упругих секций. Первый полый конус жестко скреплен своим малым основанием с корпусом и посредством контакта боковой внешней конической поверхности с внутренней конической поверхностью цанги. Второй полый конус, состоящий из упругих секций с тензодатчиками, установленными в области наибольших деформаций, соединен с первым полым конусом с помощью цилиндрического кольца. Каждая из упругих секций представляет собой сдвоенные балки, размещенные по кольцу, защемленные с одной стороны во внутренней проточке корпуса, а с другой стороны - контактирующие с цилиндрической поверхностью силоприемного элемента посредством ограничительного пружинного кольца. 3 ил.

 

Изобретение относится к измерительной технике, в частности к устройствам для измерения деформаций и перемещений, и предназначено для измерения статических или плавно меняющихся радиальных перемещений.

Известно «Тензометрическое устройство для определения радиальных усилий» (АС СССР №158433 от 19.10.63 г., G01L), содержащее упругие элементы, выполненные в виде лепестков, образованных прорезной с торца втулкой, деформация одного или нескольких лепестков регистрируется тензодатчиками. Недостатком устройства является низкая чувствительность упругого элемента, выполненного в виде цилиндрической прорезной втулки, невозможность измерения составляющих по всем направлениям деформаций.

Известен «Датчик для измерения сил» (АС СССР №198735, G01L), у которого упругий элемент представляет собой круговой набор секторных рессор, каждая из которых состоит из двух спаренных балок равного сопротивления. Недостатком устройства является определение лишь усредненного радиального перемещения.

Наиболее близким к изобретению по технической сущности и достигаемому результату является «Цанговый динамометр» (АС СССР №503148 от 15.02.76 г., G01L 1/04), содержащий чувствительный элемент в виде втулки, в которую со стороны цанги запрессованы основная и дополнительная консольные балки, радиальные деформации которых регистрируется с помощью индикаторов. Недостатком устройства является то, что точки измерения радиальных деформаций разнесены по оси устройства, что не позволяет проводить измерение в одном поперечном сечении. Кроме того, в силу того, что консольные балки, являющиеся упругими элементами, расположены телескопически, а следовательно, радиальная деформация одной внутренней балки будет влиять на деформацию внешней ближайшей к ней балки, то есть будет возникать погрешность измерений, которую трудно учесть.

Задачей изобретения является расширение функциональных возможностей устройства, за счет непрерывного измерения составляющих радиальных перемещений по всем направлениям.

Задача изобретения решается тем, что устройство выполнено следующим образом: многокомпонентный датчик перемещений снабжен силоприемным элементом, выполненным в виде упругого цилиндрического стержня, жестко защемленного во внутренней проточке корпуса датчика, а чувствительный элемент выполнен в виде двух полых конусов, сопряженных своими основаниями большого диаметра с цилиндрическим кольцом и разрезанных по образующим на ряд упругих секций, при этом первый полый конус жестко скреплен своим малым основанием с корпусом и посредством контакта боковой внешней конической поверхностью с внутренней конической поверхностью цанги, установленной с возможностью осевого перемещения и фиксируемой с помощью прижимной втулки, второй полый конус, состоящий из упругих секций с тензодатчиками, установленными в области наибольших деформаций, соединен с первым полым конусом с помощью цилиндрического кольца, ограничивающего перемещение цанги, каждая из упругих секций представляет собой сдвоенные балки, размещенные по кольцу, защемленные с одной стороны во внутренней проточке корпуса, а с другой стороны - контактирующие с цилиндрической поверхностью силоприемного элемента посредством ограничительного пружинного кольца, установленного со стороны свободного конца упругих секций и ограничивающего радиальные перемещения упругих секций.

На фиг.1 представлено устройство в разрезе, на фиг.2 - варианты исполнения консоли силоприемного элемента датчика, а на фиг.3 - силовая схема датчика.

Устройство содержит корпус 1, цангу 2, размещенную с возможностью перемещения вдоль продольной оси корпуса и фиксируемую с помощью прижимной втулки 3, силоприемный элемент 4, выполненный в виде упругого цилиндрического стержня, жестко защемленного во внутренней проточке корпуса 1 датчика, чувствительный элемент 5, выполненный в виде двух полых конусов 6, 7, сопряженных своими основаниями большого диаметра с цилиндрическим кольцом 8 и разрезанных по образующим на ряд упругих секций 9, снабженных тензодатчиками 10.

Первый полый конус 6 своей наружной конической поверхностью, совместно с цангой 2, служит для крепления силоприемного элемента 4, а второй полый конус 7 собственно является упругим элементом, состоящим из ряда упругих секций 9, расположенных по кольцу, на внутренней поверхности которых, в зоне максимальных деформаций, наклеены тензодатчики 10. Первый полый конус 6 обладает большей жесткостью по сравнению со вторым полым конусом 7, он имеет большую толщину оболочки, чем второй полый конус 7, и, помимо этого, его подкрепляет с внешней стороны цанга 2, фиксируемая прижимной втулкой 3.

Второй полый конус 7, состоящий из упругих секций 9 с тензодатчиками 10, установленными в области наибольших деформаций, соединен с первым полым конусом 6 с помощью цилиндрического кольца 8, ограничивающего перемещение цанги 2.

Каждая упругая секция 9 представляет собой сдвоенные балки, защемленные с одной стороны во внутренней проточке корпуса 1 и контактирующие с внутренней поверхностью цанги 2, а с другой стороны опирающиеся посредством контакта на цилиндрическую поверхность силоприемного элемента 4 посредством ограничительного пружинного кольца 12, установленного со стороны свободного конца упругих секций 9 и ограничивающего радиальные перемещения упругих секций.

В своей передней части малого основания, контактирующего с силоприемным элементом 4, второй полый конус 7 имеет цилиндрический переходник 11 с наружной канавкой под ограничительное пружинное кольцо 12. Наличие пружинного кольца 12 малой жесткости создает возможность ограничения радиальных деформаций упругих секций 9 в пределах (0,1-0,2) длины упругой секции 9 и обеспечивает непрерывный контакт с цилиндрической поверхностью силоприемного элемента 4.

Так как жесткость второго полого конуса 7 на порядок ниже жесткости первого полого конуса 6 за счет большей толщины, наличия цилиндрического кольца 8 и подкрепляющего действия цанги 2, то упругие секции 9 с наклеенными на них тензодатчиками 10 деформируются больше, что повышает чувствительность датчика перемещений.

В силовой схеме датчика силоприемный элемент 4 представляет собой защемленную балку цилиндрического сечения, контактирующую по кольцу с упругими секциями 9. Концевая часть консоли силоприемного элемента 4 завершается иглой или шариком для обеспечения контакта с исследуемым объектом (фиг.2).

Силовая схема датчика (фиг.3) позволяет оптимально передавать радиальные составляющие нагрузки упругим секциям 9 чувствительного элемента 5. Для каждого направления радиального перемещения, для каждой отдельной упругой секции 9 чувствительного элемента 5 собирается отдельный измерительный полумост из тензодатчиков 10. Для вывода проводников с тензодатчиков 10 в корпусе 1 имеется канавка (на чертежах не показана), которая герметизируется клеем на основе эпоксидной смолы. Перед проведением испытаний измерительный полумост, состоящий из тензодатчиков 10, по каждому каналу измерений сбалансируется.

Устройство работает следующим образом. При закреплении силоприемного элемента 4 в корпусе 1 прижимная втулка 3 перемещается в осевом направлении до упора в цилиндрическое кольцо 8, перемещая цангу 2, при этом внутренняя коническая поверхность цанги 2 контактирует с наружной боковой поверхностью первого полого конуса 6. При этом эти зажимные поверхности первого полого конуса 6 уменьшаются в диаметре и сжимают чувствительный элемент 5, обеспечивая его контакт по кольцу с силоприемным стержнем 4 на выходе из малого сечения второго полого конуса 7.

При перемещении иглы силоприемного элемента 4, связанной посредством контакта с исследуемым объектом, в радиальном направлении происходит изгиб стержня силоприемного элемента 4, при этом деформируются упругие секции 9 чувствительного элемента 5, связанные с ним посредством контакта и прижимаемые к нему ограничительным пружинным кольцом 12. При этом часть тензодатчиков 10, размещенных на упругих секциях 9, растягивается, а часть сжимается, что приводит к соответствующему изменению выходного сигнала измерительного полумоста. Величина прогиба упругих секций 9 пропорциональна радиальной составляющей перемещения исследуемого объекта в данной точке радиального сечения. Тензодатчики 10, размещенные в зоне максимальных деформаций упругих секций 9, реагируют на этот прогиб изменением сопротивления и соответствующим изменением выходного напряжения в измерительной диагонали полумоста, которое регистрируется прибором.

Предлагаемое техническое решение обладает рядом преимуществ, обеспечивающих положительный эффект:

- в отличие от прототипа устройство производит измерение радиальных составляющих перемещений независимо от ориентации силоприемного элемента в пространстве;

- предотвращает выход из строя тензодатчиков чувствительного элемента, ограничивая деформации упругих секций;

- позволяет создать датчик перемещений с малыми габаритами.

Наряду с этим устройство сохраняет положительное свойство прототипа, а именно может быть использовано для измерения перемещений по выбранным осям координат.

Таким образом, в расширении функциональных возможностей устройства за счет избирательного, по всем направлениям пространства, измерения радиальных перемещений конкретно выражается положительный эффект предлагаемого устройства.

Многокомпонентный датчик радиальных перемещений, содержащий корпус, чувствительный элемент с тензодатчиками, расположенными на упругих секциях, отличающийся тем, что он снабжен силоприемным элементом, выполненным в виде упругого цилиндрического стержня, жестко защемленного во внутренней проточке корпуса датчика, а чувствительный элемент выполнен в виде двух полых конусов, сопряженных своими основаниями большого диаметра с цилиндрическим кольцом и разрезанных по образующим на ряд упругих секций, при этом первый полый конус жестко скреплен своим малым основанием с корпусом и посредством контакта боковой внешней конической поверхности с внутренней конической поверхностью цанги, установленной с возможностью осевого перемещения и фиксируемой с помощью прижимной втулки, второй полый конус, состоящий из упругих секций с тензодатчиками, установленными в области наибольших деформаций, соединен с первым полым конусом с помощью цилиндрического кольца, ограничивающего перемещение цанги, каждая из упругих секций представляет собой сдвоенные балки, размещенные по кольцу, защемленные с одной стороны во внутренней проточке корпуса, а с другой стороны, контактирующие с цилиндрической поверхностью силоприемного элемента посредством ограничительного пружинного кольца, установленного со стороны свободного конца упругих секций и ограничивающего радиальные перемещения упругих секций.



 

Похожие патенты:

Изобретение относится к железнодорожному транспорту и касается контрольно-сортировочной проверки параметров пружин сжатия, а также подбора пар пружин с заданным полем допуска по требуемым характеристикам для их работы в рессорном комплекте тележек подвижного состава.

Изобретение относится к сельскому хозяйству и может быть использовано для определения усилия извлечения корнеплодов, например сахарной и кормовой свеклы, из почвы и при проектировании машин для ее уборки.

Изобретение относится к измерительным устройствам, в частности к конструкции тензометрических датчиков механических напряжений, и может быть использовано для измерения сдвиговой составляющей механического напряжения на границе двух сред.

Изобретение относится к области машиностроения и может быть использовано при создании измерителей сил заклинивания частиц в отверстиях решета. .

Изобретение относится к экспериментальной гидродинамике корабля и морских инженерных сооружений и касается измерительного оборудования для проведения испытаний моделей в опытовом бассейне.

Изобретение относится к области геодезии, а именно к устройствам для проведения наблюдений за послойными деформациями в твердотельном массиве. .

Изобретение относится к силоизмерительной технике. .

Изобретение относится к измерительной технике и может быть использовано при разработке датчиков силы или массы, работающих в условиях различного назначения. .

Изобретение относится к тензометрическим датчикам силы и может быть использовано в испытательной и силоизмерительной технике. .

Изобретение относится к измерительной технике и может быть использовано для контроля упругих свойств пружин преимущественно малых размеров

Изобретение относится к области станкостроения и может быть использовано в автоматизированных системах технологического оборудования и в измерительной технике

Изобретение относится к измерительной технике и может быть использовано в измерительных, сигнальных, регулирующих или управляющих системах

Изобретение относится к устройствам для измерения силы и может быть использовано при подледных исследованиях. Сущность изобретения: динамометр содержит измерительные пружины (1), закрепленные между двумя фланцами (2). На измерительные пружины (1) надет защитный стакан (3). Полость динамометра посредством герметичного шланга (7) сообщена с полостью герметичного бокса (8), расположенного выше уровня воды. Внутри герметичного шланга (7) размещен измерительный кабель (5), соединяющий динамометр через герметичный бокс (8) с регистратором (11). Герметичный бокс (8) оснащен компрессором (12) и датчиком (13) давления, связанными между собой. Технический результат: улучшение эксплуатационных свойств. 1 ил.

Изобретение относится к области «Физики материального контактного взаимодействия» жесткого плоского тела с пористой материальной средой и предназначено для определения ее параметров деформируемости и прочности. Сущность: материальную среду нагружают жестким плоским перфорированным штампом ступенчато возрастающей нагрузкой до момента потери несущей способности среды и устойчивости на ней штампа. Во времени контролируют параметры давления pi и деформации Si среды при нагружении и строят график испытания, по которому определяют параметры прочности и деформируемости среды. Каждую ступень деформации среды поддерживают постоянной во времени до ее условной стабилизации. Перед заданием последующих ступеней деформации среды упругий динамометрический элемент фиксируют стопорным винтом нагрузочного устройства. Устройство состоит из корпуса с рабочей камерой, неподвижно установленного на дне камеры нижнего жесткого плоского перфорированного штампа, рабочего кольца с образцом материальной среды, установленного в верхней части рабочего кольца на образце среды верхнего жесткого плоского подвижного перфорированного штампа и нагрузочного устройства. Нагрузочное устройство состоит из жесткой рамки с верхней и нижней перекладинами и двух направляющих стоек, толкателя и упругого динамометрического элемента. Технический результат: повышение производительности испытаний среды на сжимаемость и прочность. 2 н.п. ф-лы, 2 ил.

Изобретение относится к оборудованию для гранулирования предварительно измельченных материалов и может быть использовано для определения напряженного состояния в клиновидном рабочем пространстве вальцово-матричных пресс-грануляторов. Прессующий ролик содержит ось с подшипниками, на которых установлена цилиндрическая обечайка, и силоизмерительное устройство, встроенное в информационно-измерительную систему. Силоизмерительное устройство состоит из двухопорных тензометрических пластин с наклеенными на них тензодатчиками, цилиндрических несущих штифтов и общей для тензометрических пластин опоры. Силоизмерительное устройство установлено в продольном сквозном пазу обечайки, в плоском основании которого по его длине выполнен ряд сквозных цилиндрических радиальных отверстий. Каждый несущий штифт установлен с кольцевым зазором в соответствующем отверстии и рабочим концом выходит на контактную поверхность обечайки, а сферической головкой опирается на тензометрическую пластину. В результате повышается точность измерения нормальных радиальных напряжений в клиновидном рабочем пространстве, обеспечивается возможность определения параметров напряженного состояния и их распределения в тангенциальном направлении и по ширине рабочих органов. 5 з.п. ф-лы, 7 ил.

Изобретение относится к оборудованию для гранулирования измельченного полуфабриката растительного происхождения. Прессующий ролик пресс-гранулятора содержит обечайку, подшипники качения, торцевые крышки для фиксации обечайки относительно наружных колец подшипников и измеритель нормальных напряжений на рабочей поверхности ролика. Обечайка выполнена по меньшей мере с одним меридиональным пазом на внутренней поверхности и по меньшей мере с одним радиальным отверстием. Измеритель нормальных напряжений выполнен в виде по меньшей мере одного тензометрического штифта, установленного с зазором в соответствующем радиальном отверстии обечайки. Штифт имеет опорно-стопорную головку, расположенную в меридиональном пазу обечайки с опорой на тензометрическую пластину. На одной стороне упомянутой пластины закреплен тензодатчик. Проводники тензодатчика выведены через полость, образованную П-образным сечением колодки, по меньшей мере в одно отверстие в торцевой крышке. Колодка размещена в меридиональной пазу обечайки. В результате обеспечивается повышение точности измерения нормального напряжения на рабочей поверхности прессующего ролика. 2 з.п. ф-лы, 4 ил.
Наверх