Ультразвуковой пьезоэлектрический преобразователь

Использование: для использования в ультразвуковых приборах. Сущность заключается в том, что ультразвуковой пьезоэлектрический преобразователь содержит расположенный в корпусе протектор, пьезоэлемент, демпфер и выводы, подключенные к пьезоэлементу, при этом между протектором и пьезоэлементом установлены два согласующих слоя, один из которых, контактирующий с пьезоэлементом, выполненен из нанокомпозитного материала на основе полиэтилена высокого давления, содержащего наночастицы железа с объемной концентрацией 12-25%, другой - из материала, имеющего акустический импеданс в пределах (2.4-5.0)×107 кг/с×м2, при этом слой из нанокомпозитного материала выполнен толщиной h1, выбранной из диапазона значений h1=150f-600f, а другой слой - толщиной h2=720f-1450f, при этом толщина протектора h3=165f-1480f ([h1]=[h2]=[h3]=мм, [f]=кГц). Технический результат: повышение эффективности работы пьезоэлектрического преобразователя за счет повышения коэффициента преобразования электрического сигнала в акустический и наоборот, для увеличения мощности информационного сигнала, поступающего в приемник. 4 з.п. ф-лы, 1 ил., 2 табл.

 

Изобретение относится к приборостроению и может найти применение в ультразвуковых приборах различного назначения, например ультразвуковых расходомерах жидкостей и газов, уровнемерах и т.д.

Как известно на практике для увеличения эффективности работы ультразвукового пьезоэлектрического преобразователя используют четвертьволновые переходные «просветляющие» слои. В этом случае указанный слой снижает акустическую добротность за счет отвода энергии ультразвука в сторону контролируемой среды. Однако для излучения ультразвуковой волны в газовую среду акустический импеданс материала «просветляющего» слоя становится очень малым и такой материал в твердом виде в природе попросту отсутствует. Кроме того, для ультразвуковых расходомеров газа излучающая/принимающая поверхность преобразователя должна быть достаточно жесткой, чтобы защититься от абразивного воздействия твердых включений всегда присутствующих в газе.

Наиболее близким к предлагаемому решению является ультразвуковой преобразователь, описанный в авт. св. 2180433, МПК 7 G01F 1/66, который содержит демпфер и пьезоэлемент, установленные в патрубке посредством втулки, одним концом связанной с тыльной поверхностью демпфера, а другим, выполненным в виде фланца, через уплотнительную прокладку - с патрубком, соединительные провода и арматуру. Втулка имеет внутреннюю резьбу, между тыльной поверхностью демпфера и втулкой помещена уплотнительная прокладка. Один конец арматуры выполнен в виде конуса и помещен внутрь демпфера, а другой размещен вне демпфера и снабжен наружной резьбой для навинчивания втулки. Втулка может иметь разную длину. Патрубок снаружи выполнен в виде радиатора. Приемно-излучающая поверхность преобразователя выполнена выпуклой или вогнутой.

Недостатком известного преобразователя является низкий коэффициент передачи вследствие переотражений на краях пьезоэлемента, граничащего с протектором с одной стороны и с демпфером с другой. Причиной, препятствующей получению указанного ниже технического результата при использовании известного устройства, является плохое согласование пьезоэлемента с газовой средой через протектор и с демпфером, выполненным из композитного материала на основе эпоксидной смолы. Для улучшения согласования необходимо добавить согласующие слои между протектором и преобразователем, а также увеличить акустический импеданс демпфера.

Основной задачей, на решение которой направлен заявленный пьезоэлектрический преобразователь, является повышение эффективности работы за счет повышения коэффициента преобразования электрического сигнала в акустический и наоборот, для увеличения мощности информационного сигнала, поступающего в приемник. Это приводит к упрощению блока обработки информации, соединенного с ультразвуковыми пьезоэлектрическими преобразователями, и к повышению точности измерения расхода газа.

Указанный технический результат достигается тем, что в ультразвуковом пьезоэлектрическом преобразователе, содержащем расположенный в корпусе протектор, пьезоэлемент, демпфер и выводы, подключенные к пьезоэлементу, согласно решению между протектором и пьезоэлементом установлены два согласующих слоя, один из которых, контактирующий с пьезоэлементом, выполненен из нанокомпозитного материала на основе полиэтилена высокого давления, содержащего наночастицы железа с объемной концентрацией 12-25%, другой - из материала, имеющего акустический импеданс в пределах (2.4-5.0)×107 кг/с×м2, при этом слой из нанокомпозитного материала выполнен толщиной h1, выбранной из диапазона значений h1=150f-600f, а другой слой - толщиной h2=720f-1450f, при этом толщина протектора h3=165f-1480f ([h1]=[h2]=[h3]=мм, [f]=кГц).

В качестве материала, имеющего акустический импеданс в (2.4-5.0)×107 кг/с×м2, использованы сталь, или олово, или никель.

В качестве материала протектора использованы железо, или сталь, или бронза, или свинец, или латунь.

Приемно-излучающая поверхность преобразователя может быть выполнена вогнутой для уменьшения дифракционной расходимости.

Слой из нанокомпозитного материала выполнен толщиной 1-4 мм, слой из материала, имеющего акустический импеданс в (2.4-5.0)×107 кг/с×м2, толщиной 7-10 мм, а торцевая часть протектора имеет толщину 1-10 мм.

На чертеже представлен заявляемый преобразователь, где 1 - пьезоэлемент, 2 - демпфер, 3 - нанокомпозитный согласующий слой, 4 - второй согласующий слой, 5 - торцевая часть которого является протектором, 6 - внешняя часть электрического разъема, 7 - центральная часть электрического разъема, 8, 9 - выводы и 10 - диэлектрическая шайба.

Основу устройства составляет стандартный пьезокерамический элемент 1, имеющий форму диска с металлизированными торцами. С одной стороны этот элемент соединяется с демпфером 2, имеющим форму цилиндра, и его материал имеет большое затухание акустической волны. Диаметр демпфера 2 равен диаметру пьезоэлемента 1. Длина цилиндра выбирается равной длине пути акустической волны, на которой ее мощность ослабляется на величину не менее 10 дБ. Внутри демпфера располагается вывод 8 в виде контактного провода, соединяющего электрод, примыкающий к демпферу 2, с центральным проводником электрического разъема 7. Электрод, примыкающий к первому согласующему слою, электрически соединен с корпусом преобразователя с помощью вывода 9. С другой стороны пьезоэлемент 1 акустически соединяется с нанокомпозитным согласующим слоем 3, вторым согласующим слоем 4 и протектором (торцевая часть корпуса 5), который является торцевой частью корпуса. Согласующие слои 3 и 4 имеют форму диска с диаметром, равным диаметру пьезоэлемента 1. Толщины пьезоэлемента 1 (h), согласующих слоев 2 (h1) и 3 (h2), a также протектора 5 (h3) лежат в пределах, связанных с частотой f следующими соотношениями:

h=400f-500f,

h1=150f-600f,

h2=720f-1450f,

h3=165f-1480f.

Здесь [h]=[h1]=[h2]=[h3]=мм, [f]=кГц.

При этом ультразвуковой демпфер изготовлен из материала, полученного путем формования смеси фенопласта с вольфрамовым порошком. Все перечисленные элементы располагаются внутри цилиндрического корпуса, один конец которого является протектором, а второй конец заканчивается электрическим разъемом.

Работа устройства может быть пояснена на примере измерения расхода газа. К электрическому разъему 6-7 подается электрический сигнал импульсный или непрерывный на рабочей частоте f. Это напряжение подается на пьезоэлемент 1, который начинает колебаться на частоте f и возбуждает ультразвуковые волны по обеим сторонам, а именно в демпфер 2 и через согласующие слои 3, 4 и протектор 5 в газовую среду. Доля ультразвуковой волны, излученной в демпфер, безвозвратно уходит и волна, отраженная от границы раздела «пьезоэлемент - демпфер» не принимает существенного участия в формировании амплитудно-частотной и фазо-частотной характеристик информационного сигнала. Ультразвуковая волна, прошедшая в согласующие слои и протектор, в результате многократных переотражений на всех границах раздела оказывается максимально сфазированной в газовой среде и здесь она имеет максимальную амплитуду. Это обеспечивается выбором материала и толщин пьезоэлемента, всех согласующих слоев и протектора. При этом волна, направленная к преобразователю и являющаяся суперпозицией всех отраженных от границ раздела волн, имеет на пьезоэлементе минимальную амплитуду. Таким образом, это обеспечивает наибольший коэффициент передачи, который определяется как отношение мощности ультразвуковой волны в газовой среде к мощности электрической энергии, подводимой к пьезоэлементу.

Пример конкретного выполнения. Преобразователь на стандартную рабочую частоту 150 кГц можно выполнить следующим образом. В качестве пьезоэлемента можно использовать стандартный диск диаметром 12 мм и толщиной 3 мм из пьезокерамики ЦТС-19 с никелевыми электродами на торцах. В качестве демпфера можно использовать цилиндр из смеси вольфрамового порошка и фенопласта с их соотношениями 95:5. Диаметр и длина цилиндра равны соответственно 12 мм и 100 мм. В качестве первого согласующего слоя, примыкающего к пьезоэлементу, можно использовать нанокомпозитный материал на основе матрицы из полиэтилена высокого давления с концентрацией наночастиц железа 12%, имеющих размеры 10-30 нм. Толщина этого согласующего слоя равна 4 мм. В качестве второго согласующего слоя между протектором и первым согласующим слоем можно использовать оловянный диск толщиной 8 мм. В качестве протектора можно использовать стальной торец корпуса толщиной 3 мм. Диаметры согласующих слоев и протектора равны 12 мм. Материал и толщина боковой части металлического корпуса значения не имеют. Электрод пьезоэлемента, примыкающий к первому согласующему слою, должен иметь электрический контакт с боковой частью корпуса. Второй электрод пьезоэлемента соединяется с центральной частью электрического разъема с помощью соединительного провода (вывода 8).

Различные варианты трехслойного согласующего устройства на частоту 150 кГц представлены в таблицах 1 и 2. При этом в таблице 1 в качестве материала первого согласующего слоя взят полиэтилен высокого давления с 2%, 20% и 25% содержанием наночастиц железа, а в таблице 2 качестве материала первого согласующего слоя взят полиэтилен высокого давления с 12% содержанием наночастиц железа.

Таблица 1
Амплитуда волны в газе, отн. ед. Протектор, мм Второй согласующий слой, мм Первый согласующий слой, мм Акустическая добротность
0.297 железо 3.0 олово 7.0 3.0 (Fe 25%) 40.89
1.472 бронза 1.2 олово 7.7 1.3 (Fe 25%) 376
1.45 железо 1.5 олово 7.6 1.4 (Fe 25%) 377
1.54 сталь 1.1 олово 7.9 1.8 (Fe 20%) 395
1.63 сталь 1.4 олово 7.7 1.3 (Fe 2%) 500
2.11 бронза 5.4 сталь 9.1 1.4 (Fe 25%) 882
2.23 латунь 5.4 сталь 8.9 1.5 (Fe 20%) 937.8
1.56 золото 6.5 олово 9.69 1.5 (Fe 25%) 1079
2.49 латунь 6.1 сталь 7.4 1.6 (Fe 2%) 1153.8
1.63 золото 9.69 сталь 9.59 1.5 (Fe 25%) 1532
4.52 свинец 9.89 сталь 8.6 1.3 (Fe 25%) 5623
4.675 свинец 9.89 никель 8.6 4.29 (Fe 25%) 6024
Таблица 2
Амплитуда волны в газе, отн. ед. Протектор, мм 2 - согласующий слой, мм 1 - согласующий слой, мм Акустическая добротность
0.404 сталь 3.0 олово 8.0 4.0 60.45
f=133.6 кГц
U1=0.6, железо 1.2 олово 7.9 1.4 93.6
f1=137.4 19.25
U2=0.11,
f2=165.6
1.52 бронза 1.2 олово 7.7 1.5 375
1.46 сталь 1.5 олово 7.6 1.5 394
1.81 железо 1.2 олово 7.9 1.4 397.56
f=147.1 кГц
2.37 свинец 1.9 олово 4.8 1.7 483.87
1.66 свинец 5.7 алюминий 9.59 1.6 535.71
2.69 свинец 1.9 титан 9.0 1.6 576
1.67 золото 4.199 сталь 6.4 1.6 789.47
2.15 бронза 5.3 сталь 9.29 1.6 833
1.76 золото 4.09 никель 6.1 1.7 884.11
1.73 железо 9.2 никель 7.4 1.6 887
2.24 латунь 6.2 сталь 7.2 1.6 937.8
1.58f=153 кГц золото 6.8 олово 8.9 1.8 1092.85
2.98 титан 8.8 никель 7.3 1.7 1154.69
3.378 олово 4.49 никель 8.1 1.8 1252.5
4.62 свинец 2.0 сталь 8.3 1.6 1363.63
3.53 свинец 6.0 бронза 5.3 1.7 1875
4.837 свинец 9.899 никель 8.0 1.7 7500

Основной задачей, на решение которой направлен заявленный пьезоэлектрический преобразователь, является повышение коэффициента преобразования электрического сигнала в ультразвуковой и наоборот, для увеличения мощности информационного сигнала, поступающего в приемник. Это приводит к упрощению блока обработки информации, соединенного с ультразвуковыми пьезоэлектрическими преобразователями и к повышению точности измерения расхода газа.

Предлагаемый пьезоэлектрический преобразователь при использовании двухслойного согласующего устройства, один слой которого выполнен из нанокомпозитного материала на основе полиэтилена высокого давления и наночастиц железа, обеспечивает большую амплитуду ультразвуковой волны в газовой среде, при сохранении требуемой диаграммы направленности, а также сниженный уровень шумов.

1. Ультразвуковой пьезоэлектрический преобразователь, содержащий расположенный в корпусе протектор, пьезоэлемент, демпфер и выводы, подключенные к пьезоэлементу, отличающийся тем, что между протектором и пьезоэлементом установлены два согласующих слоя, один из которых, контактирующий с пьезоэлементом, выполненен из нанокомпозитного материала на основе полиэтилена высокого давления, содержащего наночастицы железа с объемной концентрацией 12-25%, другой - из материала, имеющего акустический импеданс в пределах (2,4-5,0)×107 кг/с×м2, при этом слой из нанокомпозитного материала выполнен толщиной h1, выбранной из диапазона значений h1=150f-600f, а другой слой - толщиной h2=720f-1450f, при этом толщина протектора h3=165f-1480f ([h1]=[h2]=[h3]=мм, [f]=кГц).

2. Ультразвуковой пьезоэлектрический преобразователь по п.1, отличающийся тем, что в качестве материала, имеющего акустический импеданс в (2,4-5,0)×107 кг/с×м2, использованы сталь, или олово, или никель.

3. Ультразвуковой пьезоэлектрический преобразователь по п.1, отличающийся тем, что в качестве материала протектора использованы железо, или сталь, или бронза, или свинец, или латунь.

4. Ультразвуковой пьезоэлектрический преобразователь по п.1, отличающийся тем, что внешняя торцевая поверхность протектора выполнена вогнутой.

5. Ультразвуковой пьезоэлектрический преобразователь по п.1, отличающийся тем, что слой из нанокомпозитного материала выполнен толщиной 1-4 мм, слой из материала, имеющего акустический импеданс в (2,4-5,0)×107 кг/с×м2 толщиной 7-10 мм, а торцевая часть протектора имеет толщину 1-10 мм.



 

Похожие патенты:

Изобретение относится к области ультразвуковой измерительной техники и может быть использовано при исследовании жидкостей и неразрушающем контроле твердых материалов.

Изобретение относится к неразрушающим испытаниям материалов ультразвуковым методом и может быть использовано для контроля качества и дефектоскопии твердых материалов в строительстве, горном деле, машиностроении.

Изобретение относится к области средств неразрушающего контроля (НК) и может быть использовано для контроля напряженного состояния металлоконструкций, в том числе и при неоднородном распределении напряжений в районе сварных швов, в трубах, различных металлических профилях, нефте- и газопроводах и т.п.

Изобретение относится к измерительной технике и может быть использовано в качестве устройства визуализации внутренних неоднородностей в плоской пластине при ее ультразвуковом зондировании с ее сканированием по ортогональным координатам относительно фокуса ультразвуковых волн.

Изобретение относится к контрольно-измерительной технике, а именно к неразрушающему ультразвуковому контролю, и может быть использовано для контроля качества таких длинномерных изделий, как стержни, прутки, цилиндрические заготовки в потоке производства с использованием струйного акустического контакта.

Изобретение относится к контрольно-измерительной технике, а именно к неразрушающему ультразвуковому контролю и, может быть использовано для контроля изделий, в том числе для контроля изделий в потоке производства.

Изобретение относится к устройствам ультразвуковой дефектоскопии. .

Изобретение относится к области неразрушающих методов контроля и может быть использовано для создания ультразвуковых преобразователей поверхностных волн, которые предназначены преимущественно для контроля железнодорожного полотна.

Изобретение относится к устройству для неразрушающего испытания материала испытуемого предмета, массивного, по меньшей мере, в некоторых участках, посредством воздействия на испытуемый предмет ультразвуковыми волнами и измерения отраженных внутри испытуемого предмета ультразвуковых волн, согласно пункту 1 формулы изобретения

Изобретение относится к электромагнитно-акустическому преобразователю для ультразвукового контроля образцов из электропроводящего материала, а также к устройству для ультразвукового контроля, включающему, по меньшей мере, один такой электромагнитно-акустический преобразователь

Использование: для внутреннего контроля детали. Сущность изобретения заключается в том, что устройство для внутреннего контроля детали (22), имеющей сверление (24) в форме полого цилиндра, содержит компоновку ультразвуковых преобразователей с множеством элементов (10) преобразователя ультразвука, расположенных, по меньшей мере, в одном ряду рядом друг с другом в несущем элементе (2) с возможностью пластичной деформации, имеющем форму сегмента полого цилиндра и имеющем множество скользящих выступов (26), продолжающихся в его продольном направлении и выдающихся в радиальном направлении выступающей частью (s) над передающими или, соответственно, приемными поверхностями элементов (10) ультразвукового преобразователя. Технический результат: обеспечение возможности надежно контролировать деталь из внутренней поверхности сверления. 9 з.п. ф-лы, 4 ил.

Использование: для проверки трубопроводов и технологического оборудования. Сущность изобретения заключается в том, что используют постоянные, ультразвуковые, гибкие, имеющие сухое средство обеспечения контакта линейные решетки, позволяющие обнаруживать и/или измерять коррозионные потери стенки, коррозионное растрескивание под напряжением и/или начало образования трещин внутри трубопровода. Устройство для ультразвукового испытания материалов содержит линейную решетку ультразвуковых датчиков и гибкое, пропускающее звук сухое средство обеспечения контакта, окружающее по меньшей мере участок каждого из ультразвуковых датчиков. Технический результат: обеспечение возможности создания ультразвуковых датчиков, которые могут быть установлены и могут работать в течение длительного времени и/или постоянно, соответствуя специфическим требованиям контроля объекта. 10 з.п. ф-лы, 14 ил.

Изобретение относится к области измерительной техники. Способ включает взаимное перемещение передающего и приемного ультразвуковых преобразователей относительно контролируемого изделия, пропускание ультразвуковых волн через изделие и обнаружение внутренних дефектов в материале путем анализа искажений ультразвукового сигнала, прошедшего через материал изделия, одновременно посредством сканирующей системы осуществляют перемещение изделия относительно ультразвуковых преобразователей. Перед проведением ультразвукового контроля измеряют размеры минимального для данного изделия дефекта типа нарушения сплошности материала следующим образом: исследуемое изделие в области предположительного расположения дефектной области разрезают на равные образцы, на торцах образцов измеряют раскрытие δ выходящих на торцы дефектов с шагом Δd, заведомо меньшим, чем размеры минимального дефекта, производят послойную препарацию образцов, после препарации измеряют площадь участков дефектов, принадлежащих соответствующему раскрытию δ, рассчитывают и строят экспериментальную зависимость плотности площади дефектов от величины раскрытия. На основании построенных экспериментальных зависимостей с учетом коридора доверительного интервала, рассчитанного с заданной вероятностью с учетом неравноточности проводимых измерений, определяют площадь или характерный размер dmin и раскрытие δmin минимального дефекта для изделия. Далее определяют шаг сканирования ΔYmin поверхности изделия, при котором обеспечивается необходимая погрешность измерения минимального дефекта. Перемещение изделия относительно преобразователей проводят с этим шагом. Технический результат состоит в повышении достоверности результатов ультразвукового контроля изделий из полимерных композиционных материалов формы тел вращения. 4 з.п. ф-лы, 5 ил., 3 фото.

Использование: для измерения ультразвукового или биомеханического параметра, характерного для вязкоупругой среды. Сущность изобретения заключается в том, что устройство для измерения ультразвукового или биомеханического параметра, характерного для вязкоупругой среды, содержит по меньшей мере: ультразвуковой преобразователь; по меньшей мере один вибратор с неподвижной деталью и подвижной деталью, при этом указанный ультразвуковой преобразователь прикреплен к указанной подвижной детали указанного по меньшей мере одного вибратора; по меньшей мере один адгезивный элемент, прикрепленный к вибратору, при этом указанный адгезивный элемент выполнен с возможностью прикрепления посредством адгезии к поверхности, направленной к нему и принадлежащей вязкоупругой среде, и удержания испускающей и принимающей стороны ультразвукового преобразователя направленной к поверхности, к которой прикреплен адгезивный элемент. Технический результат: обеспечение возможности предоставления устройства для измерения ультразвукового или биомеханического параметра вязкоупругой среды, которое существенно не меняет параметры вязкоупругой среды и для которого измерения не зависят от навыков оператора. 12 з.п. ф-лы, 5 ил.

Использование: для дефектоскопии протяженных изделий эхометодом. Сущность изобретения заключается в том, что ультразвуковая антенная решетка, содержащая установленные в корпусе ультразвуковые преобразователи с сухим точечным контактом на рабочей поверхности решетки, индивидуальным прижимным механизмом с возможностью возвратно-поступательного перемещения перпендикулярно рабочей поверхности решетки и схемой управления, при этом преобразователи расположены в плане вдоль зигзагообразной линии с точками контакта в ее вершинах, векторы колебательных смещений всех ультразвуковых преобразователей ориентированы поперек или вдоль продольной оси антенной решетки, дополнительно установлены постоянные магниты, размещенные на рабочей поверхности решетки, схема управления выполнена в виде усилителя и генератора импульсов для каждого преобразователя, общего блока управления, устройства обработки сигналов и блока связи, при этом выход каждого генератора импульсов подключен к входу соответствующего преобразователя и входу соответствующего усилителя, выход которого подключен к соответствующему информационному входу устройства обработки сигналов, вход генератора импульсов соединен с соответствующим выходом блока управления, синхронизирующий выход которого соединен с входом устройства обработки сигналов, связанным, так же как и блок управления, с блоком связи, выход которого является выходом антенной решетки, связанным с устройством обработки и отображения информации. Технический результат: обеспечение возможности создания устройства с возможностью контроля изделий как с малыми поперечными размерами, так и изделий с двоякой протяженностью. 1 з.п. ф-лы, 4 ил.

Изобретение относится к электротехнике, к неразрушающему ультразвуковому контролю и может быть использовано в устройствах для выявления внутренних и поверхностных дефектов в объектах контроля, выполненных из токопроводящих материалов, а именно листов, полос, сортового проката и труб. Техническим результатом является повышение точности определения дефекта, снижение времени определения дефекта, бесконтактное возбуждение и прием акустической волны под заданным углом, формирование горизонтально поляризованной волны, которая не трансформируется в другие типы волн при падении на границу раздела между объектом контроля и внешней средой. Блок катушек индуктивности содержит, по крайней мере, три спиральные катушки индуктивности, расположенные в ряд на подложке из диэлектрического материала. Над блоком катушек индуктивности расположен постоянный магнит. Смежные спиральные катушки индуктивности на подложке смещены по разные стороны относительно продольной оси подложки. 7 з.п. ф-лы, 2 ил.
Наверх