Способ диагностики технического состояния магистрального трубопровода



Способ диагностики технического состояния магистрального трубопровода
Способ диагностики технического состояния магистрального трубопровода

 


Владельцы патента RU 2423644:

ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ГАЗПРОМЭНЕРГОДИАГНОСТИКА" (RU)

Способ диагностики технического состояния магистрального трубопровода относится к трубопроводному транспорту и может быть использован для прогнозирования появления опасного состояния магистрального трубопровода, например при переходах магистрального трубопровода через дороги или в местах пересечений нескольких трубопроводов. Способ диагностики технического состояния магистрального трубопровода заключается в контроле с помощью датчика линейных деформаций величины напряженно-деформированного состояния трубопровода, а с помощью датчика акустической эмиссии - уровня акустической эмиссии от развивающихся дефектов трубопровода. Величину напряженно-деформированного состояния трубопровода и уровень акустической эмиссии от развивающихся дефектов трубопровода измеряют одновременно с последующим определением величины коэффициента корреляции между измеренными величинами и при превышении коэффициентом корреляции заданного порогового значения диагностируют угрозу опасного состояния магистрального трубопровода. Технический результат - повышение достоверности диагностики технического состояния магистрального трубопровода. 5 з.п. ф-лы; 2 ил.

 

Изобретение относится к трубопроводному транспорту и может быть использовано для выявления и прогноза появления опасного состояния у магистральных трубопроводов (МТ) в местах их перехода через дороги или в местах пересечений нескольких трубопроводов.

Известен способ аналогичного назначения, заключающийся в том, что прогнозирование угрозы аварийного технического состояния МТ осуществляют по показаниям датчика скорости коррозии трубопровода /Патент РФ №2286558, кл. F17D 5/06, F17L 57/00, 2006/.

Известен способ, аналогичного назначения, согласно которому прогнозирование опасного технического состояния МТ осуществляется по показаниям датчиков линейных деформаций, установленных на трубопроводе. /Патент РФ №2334162, кл. F17D 5/00, 2007/.

Известен способ аналогичного назначения, заключающийся в контроле с помощью датчика линейных деформаций величины напряженно-деформированного состояния трубопровода, а с помощью датчика акустической эмиссии - уровня акустической эмиссии от развивающихся дефектов трубопровода /Патент РФ №2264578, кл. F17D 5/02, F17L 57/00, 58/00, 2005/.

Данный способ принят за прототип.

В прототипе величину напряженно-деформированного состояния МТ и уровень акустической эмиссии с помощью соответствующих датчиков измеряют независимо друг от друга без последующего сопоставления полученных результатов.

Недостатком известных аналогов, в том числе и прототипа, является недостаточная достоверность получаемой с их помощью информации о техническом состоянии МТ, поскольку данная информация получается с помощью одного или нескольких датчиков одного типа.

Датчики, функционирующие на одном физическом принципе, подвержены воздействию помех одного вида, от которых работа датчиков сбивается со своего штатного режима. При этом системы, реализующие способы-аналоги, могут давать ложную информацию о техническом состоянии МТ.

Техническим результатом, получаемым от внедрения изобретения, является повышение достоверности диагностики технического состояния МТ.

Данный технический результат достигается за счет того, что в известном способе диагностики технического состояния МТ, заключающемся в контроле с помощью датчика линейной деформации, величины напряженно-деформированного состояния трубопровода, а с помощью датчика акустической эмиссии - уровня акустической эмиссии от развивающихся дефектов трубопровода, величину напряженно-деформированного состояния трубопровода и уровень акустической эмиссии от развивающихся дефектов трубопровода измеряют одновременно с последующим определением величины коэффициента коррекции между измеренными величинами, и при превышении коэффициентом корреляции заданного порогового значения диагностируют угрозу опасного состояния магистрального трубопровода.

Перед началом измерений проводят испытания аналогичного участка магистрального трубопровода путем его принудительной деформации и синхронного измерения величин напряженно-деформированного состояния трубопровода и уровней акустической эмиссии от развивающихся дефектов трубопровода с последующим определением зависимости уровня акустической эмиссии от величины напряженно-деформированного состояния трубопровода.

Принудительную деформацию испытуемого участка магистрального трубопровода проводят путем монотонного увеличения в нем давления газа или жидкости.

Монотонное увеличение давления газа или жидкости на исследуемом участке трубопровода проводят вплоть до разрушения последнего.

Испытания участка магистрального трубопровода проводят в лабораторных условиях.

Испытания участка магистрального трубопровода проводят в трассовых условиях.

Изобретение поясняется чертежами.

На фиг.1 представлена схема устройства для реализации способа, на фиг.2 - временные диаграммы, поясняющие существо способа.

Устройство для реализации способа содержит (фиг.1) как минимум два датчика различной физической природы: датчик 1 линейных деформаций и датчик 2 акустической эмиссии. Датчики 1, 2 установлены рядом в пределах радиуса корреляции на МТ 3.

Выходы датчиков 1, 2 подключены к блоку 4 обработки информации (БОИ 4), соединенному выходом с радиомодемом 5.

БОИ 4 может быть выполнен, например в виде двух усилителей 6, 7 двух аналого-цифровых преобразователей 8, 9 (АЦП 8, 9) и микропроцессора 10 (МП 10).

Выходы датчика 1 через последовательно соединенный усилитель 6 и АЦП 8 подключены ко входу МП 10, соединенного выходом с управляемым входом радиомодема 5.

Выход датчика 2 через последовательно соединенный усилитель 7 и АЦП 9 подключен также ко входу МП 10.

Радиомодем 5 связан по радиоканалу с диспетчерским пунктом (на чертеже не показан).

Способ диагностики технического состояния МТ 3 реализуется следующим образом.

С помощью датчиков 1, 2 непрерывно или дискретно во времени t измеряются величины D(t) напряженно-деформированного состояния трубопровода 3 и уровень I(t) акустической эмиссии от развивающихся дефектов трубопровода 3 (фиг.2, вверху).

После усиления и оцифровки сигналов D(t) и I(t) соответственно в усилителях 6, 7 и АЦП 8, 9 сигналы направляются в МП 10, где определяется коэффициент K(t) корреляции между измеряемыми величинами D(t) и I(t).

При этом коэффициент K(t) корреляции все время сравнивается в МП 10 с пороговым значением Kn, величина которого задается, исходя из приемлемого компромисса между вероятностью пропуска опасного состояния МТ 3 и вероятностью ложного срабатывания устройства.

При превышении в момент времени t1 коэффициентом корреляции K(t) заданного порога Kn (фиг.2, внизу) диагностируется угроза опасного состояния контролируемого трубопровода 3.

Перед эксплуатацией устройство, реализующее способ, проходит метрологические испытания в лабораторных или трассовых условиях.

Для этого типовой участок МТ 3, оснащенный типовыми датчиками линейной деформации и акустической эмиссии, монотонно нагружается взрыво-, пожаробезопасными газами или жидкостью. При этом контролируют давление среды в МТ, величину напряженно-деформированного состояния трубопровода и уровень акустической эмиссии от развивающихся дефектов трубопровода, а также коэффициент корреляции между измеряемыми величинами при различных давлениях среды в трубопроводе.

Полученные результаты метрологических испытаний МТ позволяют заранее выявить опасные режимы эксплуатации трубопровода, при появлении которых оператору на диспетчерском пункте посылается предупреждающий сигнал по каналу связи с помощью радиомодема 5.

Одновременный контроль двух параметров МТ, имеющих различную физическую природу, и последующее определение коэффициента корреляции между измеряемыми параметрами позволяет повысить надежность диагностики технического состояния трубопровода, чем обеспечивается достижение поставленного технического результата.

1. Способ диагностики технического состояния магистрального трубопровода, заключающийся в контроле с помощью датчика линейных деформаций величины напряженно-деформированного состояния трубопровода, а с помощью датчика акустической эмиссии - уровня акустической эмиссии от развивающихся дефектов трубопровода, отличающийся тем, что величину напряженно-деформированного состояния трубопровода и уровень акустической эмиссии от развивающихся дефектов трубопровода измеряют одновременно с последующим определением величины коэффициента корреляции между измеренными величинами и при превышении коэффициентом корреляции заданного порогового значения диагностируют угрозу опасного состояния магистрального трубопровода.

2. Способ по п.1, отличающийся тем, что перед началом измерений проводят испытания аналогичного участка магистрального трубопровода путем его принудительной деформации и синхронного измерения величин напряженно-деформированного состояния трубопровода и уровней акустической эмиссии от развивающихся дефектов трубопровода с последующим определением зависимости уровня акустической эмиссии от величины напряженно-деформированного состояния трубопровода.

3. Способ по п.2, отличающийся тем, что принудительную деформацию испытуемого участка магистрального трубопровода проводят путем монотонного увеличения в нем давления газа или жидкости.

4. Способ по п.3, отличающийся тем, что монотонное увеличение давления газа в исследуемом участке трубопровода проводят вплоть до разрушения последнего.

5. Способ по п.2, отличающийся тем, что испытания участка магистрального трубопровода проводят в лабораторных условиях.

6. Способ по п.2, отличающийся тем, что испытания участка магистрального трубопровода проводят в трассовых условиях.



 

Похожие патенты:

Изобретение относится к трубопроводному транспорту и может быть использовано для контроля за техническим состоянием пересечений магистральных трубопроводов (МТ).

Изобретение относится к трубопроводному транспорту и может быть использовано для диагностики технического состояния магистрального трубопровода (МТ) при его переходе через естественные или искусственные преграды, например через автомобильные или железные дороги.

Изобретение относится к контрольно-измерительной технике и направлено на повышение помехоустойчивости. .

Изобретение относится к трубопроводному транспорту. .

Изобретение относится к трубопроводному транспорту. .

Изобретение относится к области испытательной техники и направлено на снижение влияния шумов на уровень полезного акустического сигнала. .

Изобретение относится к контрольно-измерительной технике и предназначено для диагностики преимущественно подводных магистральных трубопроводов

Изобретение относится к контрольно-измерительной технике и предназначено для дистанционного определения места утечки жидкости или газа из магистрального трубопровода, находящегося в траншее под грунтом

Изобретение относится к контрольно-измерительной технике и предназначено для диагностики преимущественно подводных магистральных трубопроводов

Изобретение относится к области энергетики, в частности к устройствам обнаружения разрыва труб пароводяного тракта котлов

Изобретение относится к области неразрушающего контроля неповоротных цилиндрических деталей, в частности трубопроводов, и направлено на упрощение конструкции устройства, увеличение скорости сканирования при сохранении точности и надежности контроля, что обеспечивается за счет того, что устройство содержит блок контрольно-измерительной аппаратуры, дистанционного управления и обмена данными и механизм перемещения по винтовой траектории, обеспечивающий возможность изменения направления движения

Изобретение относится к области трубопроводного транспорта и предназначено для диагностики трубопроводов
Наверх