Способ измерения абсолютного значения коэффициента отражения зеркал

Изобретение относится к фотометрии и спектрофотометрии и предназначено для измерения абсолютного значения коэффициента отражения зеркал со сферической или параболической формой поверхности. Способ заключается в том, что в качестве исследуемых используют два зеркала, освещают параллельным потоком излучения первое по ходу потока исследуемое зеркало, совмещают фокусы исследуемых зеркал и отраженный от второго исследуемого зеркала параллельный поток излучения направляют плоским зеркалом на объектив фотоприемной системы. Измеряют поток излучения, направляют параллельный поток излучения плоским зеркалом на объектив фотоприемной системы и измеряют опорный поток излучения в отсутствии исследуемых зеркал. Преобразуют параллельный поток излучения в сходящийся, совмещают фокус объектива с фокусом первого исследуемого зеркала, параллельный поток излучения, отраженный от первого исследуемого зеркала, направляют плоским зеркалом на объектив фотоприемной системы и измеряют соответствующий поток излучения, устанавливают вместо первого исследуемого зеркала второе и аналогично измеряют соответствующий поток излучения. Изобретение позволяет повысить точность измерений. 1 ил.

 

Изобретение относится к фотометрии и спектрофотометрии и предназначено для измерений абсолютного значения коэффициента отражения зеркал со сферической или параболической формой поверхности преимущественно в инфракрасной области спектра.

Известен способ измерения коэффициента отражения вогнутых сферических зеркал (авторское свидетельство №1601564, МКИ G01N 21/55, опубл. 1990, г. Бюл. №39). Коэффициент отражения определяют при углах падения α на поверхность зеркала, не превышающих 0,5-2,5°, при этом в одном положении поворотного основания дополнительным фокусирующим объективом на фотоприемник проецируют изображение источника излучения, создаваемое фокусирующим объективом на поверхности плоского зеркала, и регистрируют сигнал фотоприемника Uполн, пропорциональный потоку излучения, падающему на контролируемую сферу. В другом положении основания (при развороте на угол (φ=180°-2α), дополнительным объективом на фотоприемник проецируется изображение источника излучения, создаваемое контролируемой сферой, при этом регистрируют сигнал Ux, пропорциональный потоку излучения, отраженному от контролируемой сферы. Коэффициент отражения ρ определяют по формуле .

Недостатком способа является чрезвычайная сложность его реализации, связанная с необходимостью разработки прецизионной оптико-механической системы, обеспечивающей при установке и фиксации основания в двух угловых положениях одинаковые условия фокусировки потоков излучения на фотоприемнике.

Наиболее близким по технической сущности является способ измерения абсолютного значения коэффициента отражения зеркал (авторское свидетельство №1827590, МКИ G01N 21/55, опубликовано 1993 г., Бюл. №26), при осуществлении которого формируют с помощью оптической системы поток излучения, измеряют фотоприемником поток излучения на выходе оптической системы в присутствии исследуемого зеркала, измеряют опорный поток l отсутствии исследуемого зеркала и рассчитывают по формуле абсолютное значение коэффициента отражения.

В рассматриваемом способе для определения абсолютного значения коэффициента отражения зеркала последовательно измеряют сигналы а, b, с, d от потоков излучения, взаимодействующих со сферическим и плоским зеркалами (а), с исследуемым параболическим и плоским зеркалами (b), с исследуемым параболическим и сферическим зеркалами (с) и с исследуемым параболическим зеркалом (d). Таким образом, для реализации способа необходимо формировать четыре варианта измерительных схем, что усложняет способ измерений.

Основным недостатком способа, снижающим его точность, являются большие потери потока излучения, составляющие не менее 75% и обусловленные применением в схеме измерений светоделителя, что ограничивает применение способа при выполнении спектральных измерений в инфракрасной области спектра. Помимо этого к недостаткам способа, увеличивающим погрешность измерения абсолютного коэффициента отражения, следует отнести потери потока излучения при регистрации сигналов а, b и c, а также завышенные значения регистрируемых сигналов b и с из-за влияния приосевых потоков мешающего излучения, однократно отраженного от исследуемого зеркала в обратном направлении (направлении «назад»). Способ, таким образом, обладает недостатками, значительно снижающими его точность, особенно, при измерениях спектрального коэффициента отражения в инфракрасной области.

Технический результат изобретения заключается в повышении точности измерений коэффициента отражения исключением в схемах измерений потерь потоков излучения и потоков мешающего излучения, а также исключением влияния на результат измерений внешних факторов, что достигается за счет возможности оперативно контролировать опорные потоки излучения без исследуемых зеркал в процессе измерений потоков излучения с двумя исследуемыми зеркалами.

Технический результат достигается тем, что в способе измерения абсолютного значения коэффициента отражения зеркал, при осуществлении которого формируют с помощью оптической системы поток излучения, измеряют фотоприемником поток излучения на выходе оптической системы в присутствии исследуемого зеркала, измеряют опорный поток в отсутствии исследуемого зеркала и определяют коэффициент отражения по формуле, в качестве исследуемых используют два зеркала, освещают параллельным потоком излучения первое по ходу потока исследуемое зеркало, совмещают фокусы исследуемых зеркал, отраженный от второго исследуемого зеркала параллельный поток излучения направляют плоским зеркалом на объектив фотоприемной системы и измеряют соответствующий поток излучения, направляют параллельный поток излучения плоским зеркалом на объектив фотоприемной системы и измеряют опорный поток излучения в отсутствии исследуемых зеркал, преобразуют объективом параллельный поток излучения в сходящийся, совмещают фокус объектива с фокусом первого исследуемого зеркала, параллельный поток излучения, отраженный от первого исследуемого зеркала, направляют плоским зеркалом на объектив фотоприемной системы и измеряют соответствующий поток излучения, устанавливают вместо первого исследуемого зеркала второе и аналогично измеряют соответствующий поток излучения, а абсолютное значение коэффициента отражения зеркал определяют по формулам:

где ρ1 - абсолютное значение коэффициента отражения первого исследуемого зеркала;

ρ2 - абсолютное значение коэффициента отражения второго исследуемого зеркала;

а - сигнал фотоприемника, соответствующий потоку излучения с двумя исследуемыми зеркалами;

b - сигнал фотоприемника, соответствующий опорному потоку излучения в отсутствии исследуемых зеркал;

с - сигнал фотоприемника, соответствующий потоку излучения с первым исследуемым зеркалом;

d - сигнал фотоприемника, соответствующий потоку излучения со вторым исследуемым зеркалом.

На чертеже показана оптическая схема устройства, реализующего способ измерений абсолютного значения коэффициента отражения зеркал.

Устройство содержит исследуемые зеркала 1 и 2, источник излучения в виде выходной щели 3 монохроматора, коллимационный объектив 4, формирующий параллельный поток излучения, апертурную диафрагму 5, расположенные по ходу потока излучения перекидное плоское зеркало 6, плоское зеркало 7, объектив 8, плоское зеркало 9, снабженное механизмом линейного перемещения вдоль оси, перпендикулярной оси параллельного потока излучения, и механизмом поворота на 90°, ориентирующим отражающую поверхность зеркала в направлении параллельного потока излучения и в направлении потока излучения, отраженного от исследуемых зеркал 1 и 2, объектив 10 фотоприемной системы и фотоприемник 11.

Способ измерения осуществляют следующим образом. Устанавливают плоское зеркало 9 в положение III, а плоское зеркало 6 в положение II, при котором параллельный поток излучения освещает исследуемое зеркало 1, оптически сопряженное с исследуемым зеркалом 2. Совмещают фокусы исследуемых зеркал. Отраженный от исследуемого зеркала 2 параллельный поток излучения направляют плоским зеркалом 9 на объектив 10 фотоприемной системы. Измеряют сигнал а фотоприемника 11, соответствующий потоку излучения с двумя исследуемыми зеркалами 1 и 2. Величина этого сигнала а=L·τ4·ρ6·ρ1·ρ2·ρ9·τ10,

где L - яркость источника излучения;

τ4 - коэффициент пропускания коллимационного объектива 4;

ρ6 - коэффициент отражения плоского зеркала 6;

ρ1 и ρ2 - коэффициенты отражения исследуемых зеркал 1 и 2;

ρ9 - коэффициент отражения плоского зеркала 9;

τ10 - коэффициент пропускания объектива 10 фотоприемной системы.

Направляют параллельный поток излучения плоским зеркалом 9, которое устанавливают в положении I, на объектив 10 фотоприемной системы и измеряют сигнал b фотоприемника 11, соответствующий опорному потоку излучения в отсутствии исследуемых зеркал 1 и 2. Сигнал фотоприемника 11 в этом случае b=L·τ4·ρ6·ρ9·τ10.

Устанавливают плоское зеркало 6 в положение I и преобразуют объективом 8 параллельный поток излучения в сходящийся. Совмещают фокусы объектива 8 и исследуемого зеркала 1. Параллельный поток излучения, отраженный от исследуемого зеркала 1, направляют плоским зеркалом 9, установленным в положение II, на объектив 10 фотоприемной системы и измеряют сигнал с фотоприемника 11, соответствующий потоку излучения с исследуемым зеркалом 1, c=L·τ4·ρ7·τ8·ρ1·ρ9·τ10,

где τ8 - коэффициент пропускания объектива 8;

ρ7 - коэффициент отражения плоского зеркала 7.

Устанавливают вместо исследуемого зеркала 1 зеркало 2 и аналогично измеряют сигнал d фотоприемника 11, соответствующий потоку излучения с исследуемым зеркалом 2, d=L·τ4·ρ7·τ8·ρ2·ρ9·τ10.

По результатам измерений получают два независимых уравнения:

, , решая которые определяют абсолютное значение коэффициента отражения зеркал по формулам:

где ρ1 - абсолютное значение коэффициента отражения первого исследуемого зеркала;

ρ2 - абсолютное значение коэффициента отражения второго исследуемого зеркала;

а - сигнал фотоприемника, соответствующий потоку излучения с двумя исследуемыми зеркалами;

b - сигнал фотоприемника, соответствующий опорному потоку излучения в отсутствии исследуемых зеркал;

с - сигнал фотоприемника, соответствующий потоку излучения с первым исследуемым зеркалом;

d - сигнал фотоприемника, соответствующий потоку излучения со вторым исследуемым зеркалом.

В соответствии со способом измерены абсолютные значения спектрального коэффициента отражения внеосевых параболических зеркал (уравнение параболы y2=1080x, световой диаметр dсв=62 мм) с зеркальным покрытием МД.В.029 по ОСТ 3-1901-95. Измерения выполнены с монохроматором МДР - 12 в области спектра от 3 до 14 мкм. Источником излучения являлся карбидокремниевый излучатель (глобар) при температуре Т=1400 К. В качестве приемника излучения использовался оптико-акустический приемник излучения ОАП-7-1; регистрирующим прибором служил мультиметр Agilent 3458A. Абсолютное значение спектрального коэффициента отражения в области спектра (3…5) мкм изменялось в пределах от 0,962 до 0,966, а в области спектра (8…14) мкм - от 0,965 до 0,980. Погрешность регистрации сигналов не превышала 0,3%; суммарная расчетная погрешность измерений составляла не более 0,8%.

При измерениях потоков излучения, взаимодействующих с двумя исследуемыми зеркалами, влияние внешних факторов полностью исключалось поочередной регистрацией сигналов а и b.

Способ измерения абсолютного значения коэффициента отражения зеркал, при осуществлении которого формируют с помощью оптической системы поток излучения, измеряют фотоприемником поток излучения на выходе оптической системы в присутствии исследуемого зеркала, измеряют опорный поток излучения в отсутствии исследуемого зеркала и определяют коэффициент отражения по формуле, отличающийся тем, что в качестве исследуемых используют два зеркала, освещают параллельным потоком излучения первое по ходу потока исследуемое зеркало, совмещают фокусы исследуемых зеркал, отраженный от второго исследуемого зеркала параллельный поток излучения направляют плоским зеркалом на объектив фотоприемной системы и измеряют соответствующий поток излучения, направляют параллельный поток излучения плоским зеркалом на объектив фотоприемной системы и измеряют опорный поток излучения в отсутствии исследуемых зеркал, преобразуют объективом параллельный поток излучения в сходящийся, совмещают фокус объектива с фокусом первого исследуемого зеркала, параллельный поток излучения, отраженный от первого исследуемого зеркала, направляют плоским зеркалом на объектив фотоприемной системы и измеряют соответствующий поток излучения, устанавливают вместо первого исследуемого зеркала второе и аналогично измеряют соответствующий поток излучения, а абсолютное значение коэффициента отражения зеркал определяют по формулам:
;
,
где ρ1 - абсолютное значение коэффициента отражения первого исследуемого зеркала; ρ2 - абсолютное значение коэффициента отражения второго исследуемого зеркала; а - сигнал фотоприемника, соответствующий потоку излучения с двумя исследуемыми зеркалами;
b - сигнал фотоприемника, соответствующий опорному потоку излучения в отсутствии исследуемых зеркал; с - сигнал фотоприемника, соответствующий потоку излучения с первым исследуемым зеркалом;
d - сигнал фотоприемника, соответствующий потоку излучения со вторым исследуемым зеркалом.



 

Похожие патенты:

Изобретение относится к способу и устройству для исследования материала образца с помощью матрицы световых пятен (501) подсветки образца, создаваемых затухающими волнами.

Изобретение относится к способам определения физических условий, при которых в металлах и сплавах происходят фазовые превращения. .

Изобретение относится к измерительной технике и может быть использовано для оперативного обнаружения разливов нефти и нефтепродуктов в морях и внутренних водоемах.

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике. .

Изобретение относится к космической технике. .

Изобретение относится к космической технике. .

Изобретение относится к измерительной технике и может быть использовано для оперативного обнаружения разливов нефти и нефтепродуктов в морях и внутренних водоемах.

Изобретение относится к области биологических, химических и биохимических поверхностных сенсоров, основанных на возбуждении поверхностных волноводных электромагнитных волн на границе раздела жидкость-твердое тело.

Изобретение относится к определению характеристик поверхностного слоя металлургического изделия, в частности гальванического покрытия стальных полос. .

Изобретение относится к измерительной технике

Изобретение относится к области технической физики, в частности к фотометрии и спектрофотометрии, и может быть использовано для измерения абсолютных значений коэффициентов отражения зеркал, особенно зеркал, обладающих высоким коэффициентом отражения

Изобретение относится к микроэлектронному сенсорному устройству и способу для обнаружения целевых компонентов, например, биологических молекул, содержащих частицы-метки

Изобретение относится к оптическим методам контроля поверхности металлов и полупроводников в терагерцовом диапазоне спектра и может найти применение в технологических процессах для контроля толщины и однородности тонкослойных покрытий металлизированных изделий и полупроводниковых подложек, в методах по обнаружению неоднородностей (на) проводящей поверхности, в инфракрасной (ИК) рефрактометрии металлов для определения их диэлектрической проницаемости, в ИК сенсорных устройствах и контрольно-измерительной технике

Изобретение относится к области измерений неоднородностей поверхностей гетероструктур

Изобретение относится к системе биодатчика на основе нарушенного полного внутреннего отражения (НПВО)

Изобретение относится к оптическому устройству для обеспечения нераспространяющегося излучения, в ответ на падающее излучение, в объеме регистрации, который содержит целевой компонент в среде, причем, по меньшей мере, один плоскостной размер (W1) объема регистрации меньше дифракционного предела. Дифракционный предел определяется длиной волны излучения и средой. Нераспространяющееся излучение обеспечивается структурами, образующими отверстие, причем наименьший плоскостной размер отверстия W1 меньше дифракционного предела. Объем регистрации обеспечен между структурами, образующими отверстие. Структуры, образующие отверстие, дополнительно определяют наибольший плоскостной размер отверстия W2; причем наибольший плоскостной размер отверстия больше дифракционного предела. Источник предусмотрен для излучения пучка излучения, имеющего длину волны, падающий на оптическое устройство, направление падения которого не параллельно внеплоскостному нормальному направлению, для обеспечения нераспространяющегося излучения в объеме регистрации, в ответ на излучение, падающее на оптическое устройство. Плоскость падения параллельна наибольшему плоскостному размеру отверстия. Изобретение обеспечивает увеличение эффективности возбуждения без необходимости использовать более высокие интенсивности для регистрации целевых компонентов. 3 н. и 10 з.п. ф-лы, 7 ил.

Способ включает освещение образца, регистрацию отраженного излучения, усреднение измерений по различным точкам образца. Выбирают углы освещения образца исходя из углов наблюдения βi=αi/2, где αi - угол наблюдения i-го фотоприемника, включая αi=0. Первое измерение производят при α=0 и β=0, оценивают полуширину w индикатрисы рассеяния I(α) при β=0 по уровню 0,1 от максимального значения. Изменяют угол освещения βi на βi+1 и повторяют регистрацию усредненных значений, пока в диапазоне от α=0 до α=2βw распределение I(α) не станет двумодальным с локальным минимумом с величиной менее 15-20% от величины 0,5·(I(α=0, β=0)+I(2βw)). Определяют вид индикатрисы рассеяния относительно направления зеркального отражения I(α-2β) и аппроксимируют ее функцией fA(x), где х=α-2β. Определяют величины интенсивности в направлении зеркального отражения Im(β) и аппроксимируют эту функцию в диапазоне от β>w/2 (или 15°) до 45° функцией IA(β). Производят экстраполяцию IA(β) в область β<w/2 и определяют величину IA(β=0). Определяют световозвращенную и диффузную составляющие как разность Ii=I(α=0, β=0)-IA(β=0); для ненулевого (стандартного) угла βs вычисляют как Ii=I(α=0, β=βS)-fA(βS)·IA(βS). Если Ii(β=0)<<IA(β=0), то исследованный образец не обладает истинным световоз-вращением. Технический результат - увеличение точности измерений, определение соотношения световозвращенной и диффузной составляющих и диаграммы направленности и минимизация времени измерений. 7 ил.

Изобретение относится к оптике и аналитической технике и может быть использовано для определения наличия следовых количеств летучих веществ, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра. Способ основан на измерении параметров поверхностного плазмонного резонанса и определении по ним концентрации летучих веществ. После воздействия света на слой галоидного серебра и образования в его микрокристаллах центров скрытого изображения этот слой подвергается фотографическому проявлению. Изобретение позволяет повысить чувствительность сенсора до величин порядка 106-1010 см-3.

Изобретение предназначено для определения целевого вещества в исследуемой области. Сенсорное устройство (100) содержит сенсорную поверхность (112) с исследуемой областью (113) и контрольной областью (120), а также контрольный элемент (121), размещенный в контрольной области (120). При этом контрольный элемент (121) адаптирован для защиты контрольной области (120) от целевого вещества (2), так чтобы свет, отраженный в контрольной области (120), при условии полного внутреннего отражения оставался не подвергнутым воздействию за счет присутствия или отсутствия целевого вещества (2). Это позволяет измерять свойство, обычно интенсивность света, отраженного на контрольную область (120), независимо от присутствия или отсутствия целевого вещества (2), что может быть использовано для выполнения улучшенной коррекции света, отраженного в исследуемой области (113). 3 н. и 10 з.п. ф-лы, 14 ил.
Наверх